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Abstract

The traditional focus of scheduling research is on finding schedules with a low implementation cost. However, in many real
world scheduling applications finding a robust or flexible schedule is just as important. A robust schedule is a quality schedule
expected to still be acceptable if something unforeseen happens, while a flexible schedule is a quality schedule expected to be
easy to change. In this paper, the robustness and flexibility of schedules produced by minimising different robustness measures
are investigated. One kind of robustness measure is the neighbourhood-based robustness measure, in which the basic idea is
to minimise the implementation costs of a set of schedules located around a centre schedule. For tardiness problems another
way of improving robustness is to increase the slack of the schedule by minimising lateness instead of tardiness. The problems
used in the experiments are maximum tardiness, summed tardiness and total flow-time job shop problems.

The experiments showed that the neighbourhood-based robustness measures improves robustness for all the problem
types. Flexibility is improved for maximum tardiness and loose summed tardiness problems, while it is not improved for
tight summed tardiness problems and total flow-time problems. The lateness-based robustness measures are found to also
improve robustness and in some cases flexibility for the same problems, but the improvement is not as substantial as with the
neighbourhood-based measures.

Based on these observations, it is conjectured that neighbourhood-based robustness can be expected to improve flexibility
on problems with few critical points. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

When solving a scheduling problem the focus tra-
ditionally is on minimising a measure of the cost of
implementing the schedule. However, most real world
scheduling systems operate in dynamic environments,
in which unforeseen and unplanned events can happen
at short notice. Such events include the breakdown of
machines, employees getting sick, new jobs appear-
ing, etc. The problem encountered when an unfore-
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seen event and a schedule has to be changed is usu-
ally called a rescheduling problem. When a reschedul-
ing problem is solved a new schedule incorporating
the changes in the environment and the part of the
preschedule (the schedule followed prior to the break-
down) already implemented is sought. This schedule
should ideally have as low an implementation cost as
possible. When the unforeseen event is a breakdown
(the temporary unavailability of a resource), the sim-
plest way to solve a rescheduling problem is often to
keep the processing order of the preschedule, but de-
lay processing when necessary. In the following this
kind of rescheduling is called simple rescheduling or
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right-shifting. Right-shifting is the simplest and fastest
kind of rescheduling, but in order to improve perfor-
mance more complex methods searching some set of
schedules can be used. In the following, this is called
rescheduling using search.

The difficulty of the rescheduling problem de-
pends on the nature of the breakdown as well as the
preschedule. Some preschedules will generally lead
to rescheduling problems with lower implementation
costs than others. A preschedule which tends to per-
form better than ordinary schedules after a breakdown
and right-shifting is termed robust, while a schedule
which tends to perform well after a breakdown and
rescheduling using search is termed flexible.

It is difficult to relate the terms flexibility and ro-
bustness to each other. Often a schedule which is
robust can also turn out to be flexible to some de-
gree, since robustness means that the schedule is still
acceptable if small delays happen during schedule
execution. The acceptability of small delays is an ad-
vantage if small changes are made to the schedule. On
the other hand, the acceptability of small delays does
not necessarily say anything about the possibility of
making profound changes in the schedule.

The objective of this paper is to investigate two
ways of achieving schedule robustness and flexi-
bility for job shop problems. The first way is the
neighbourhood-based robustness measure technique
used in [10] on makespan problems, which is refor-
mulated for maximum and summed tardiness, and
total flowtime problems. The second way is a simpler
idea applicable to tardiness problems; by minimising
a measure of lateness instead of tardiness, the slack
in the schedules can be increased, which may im-
prove the rescheduling performance of the schedules.
The slack of an operation in a schedule is the “buffer
time” by which the operation can be delayed without
worsening the performance of the schedule.

The work presented in this paper is an exten-
sion of the work presented in [11], in which the
neighbourhood-based robustness idea was compared
to ordinary scheduling for the performance measures
maximum tardiness, summed tardiness and total flow
time on a smaller range of problems.

The outline of the paper is as follows. Section 2
defines the job shop scheduling problem and notation.
In Section 3 previous work on robust scheduling is
briefly covered. Section 4 introduces the robustness

measures for the maximum, summed tardiness and
total flow-time job shop problems. In Section 5 the
genetic algorithm used to perform the scheduling is
described, while Section 6 describes how breakdowns
are simulated and how rescheduling is performed
in the experiments. Section 7 describes the experi-
ments and reports the results. Section 8 contains the
conclusions.

2. Notation

An N × M job shop scheduling problem consists
of N jobs and M machines. A job Jj consists of a se-
quence of operations Ōj = (oj1, oj2, . . . , ojkj ). Each
operation oj l is to be processed on a specific machine
and has a specific processing time τ jl . Each job has
at most one operation on each machine. The pro-
cessing order of the operations in job Jj must be the
order specified in the sequence Ōj . These sequences
are often called the technological constraints. During
processing each machine can process at most one op-
eration at a time, and no preemption can take place;
once processing of an operation has been started it
must run until it has completed. In the following Cj

will denote the end of processing time of the last
operation of job Jj in a given schedule.

Some problems include a due date dj for each job,
a time by which the processing of the job is supposed
to be finished, a release time rj for each job, prior
to which no processing of the job can be done, or a
initial set-up time sm for each machine, prior to which
on processing can be done on the machine.

A number of different objective functions exist for
job shop problems. The most extensively researched
is the makespan Cmax = maxj∈{1,...,N} (Cj ), the
time elapsed from the beginning of processing un-
til the last operation has completed. The makespan
objective is not realistic, since it is not well-suited
for scheduling on a rolling time horizon-basis (jobs
arriving continuously over time), and since it does
not include due dates. More realistic objectives in-
clude total flowtime F = ∑N

j=1Cj − rj , summed

lateness L∑ = ∑N
j=1Cj − dj , summed tardiness

T∑ = ∑N
j=1max (Cj − dj , 0), maximum lateness

Lmax = maxj∈{1,...,N} (Cj − dj ) and maximum tardi-
ness Tmax = max (Lmax, 0). All of these performance
measures reflect schedule implementation cost and
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are to be minimised, i.e. a low performance measure
equals a good schedule.

All of the performance measures Cmax, T∑, Tmax,
L∑, Lmax and F are regular measures. This means that
starting an operation earlier never worsens the per-
formance of a schedule. This also means that in the
set of optimal schedules there will always be an ac-
tive schedule, a schedule in which no operation can
be started earlier without delaying the start of another
operation. Since an active schedule can be unambigu-
ously described by the operation processing order [8],
a natural representation of schedules for this kind of
problem is the processing order.

3. Previous work

Key references on robust and flexible scheduling
include the following ones.

Uncertain operation processing times have been
treated by a number of authors. In [12] the worst case
performance under a number of different scenarios of
one- and two-machine problems is considered. Based
on a theoretical analysis of the problems a branch
and bound algorithm and some scheduling heuristics
are constructed. Using experiments these algorithms
are shown to work well. In [17] a branch and bound
algorithm is used to decompose a weighted tardi-
ness job shop problem into a series of subproblems,
each of which are solved during execution of the
schedule. The method is demonstrated to produce
more flexible schedules than two other scheduling
methods. In [1] job shop scheduling based on pes-
simistic estimates of the processing times is shown to
be superior to scheduling based on processing time
averages.

In [9] an artificial immune system (AIS) for solv-
ing job shop problems is evolved. The schedules pro-
duced by the AIS are demonstrated to be more similar
to each other than schedules produced by a standard
GA approach. Based on this observation the AIS is
conjectured to produce robust schedules.

Breakdown of machines has been treated in [14],
in which a robustness measure based on slack for
makespan job shop problems is defined. Experiments
verify that schedules found optimising the robustness
measure perform better after a series of breakdowns
than ordinary schedules.

In [10] a robustness measure is defined for the
makespan job shop scheduling problem. Experi-
ments demonstrate that on average the schedules
found by minimising the robustness measure perform
better than ordinary schedules after a breakdown,
when any of four different rescheduling methods are
used.

4. Improving robustness and flexibility

When solving a scheduling problem with perfor-
mance measure, P, the most straight-forward approach
is to simply minimise P. Better approaches can be
found to improve the dynamic performance of the
schedules.

4.1. Minimising lateness instead of tardiness

When a maximum tardiness (Tmax) problem is
solved schedule robustness and flexibility may be
improved by instead minimising the maximum late-
ness (Lmax). Recall that since T max = max (Lmax, 0),
minimising Lmax will also minimise Tmax. If Tmax is
minimised, the minimisation process will stop if a
schedule with T max = 0 is reached. If Lmax is min-
imised, Lmax will be minimised even if Lmax < 0.
This is likely to improve dynamic performance of the
schedule, since minimising Lmax beyond Lmax < 0
will add more slack to the schedule. This slack can
be thought of as a “buffer time”; if the schedule has,
e.g. Lmax < −20, then every part of the schedule can
be delayed by 20 time-units while still achieving the
best possible tardiness performance, T max = 0. Note
that this approach can only be expected to improve
dynamic performance for loose problems; if no solu-
tion exists for which Lmax < 0, minimising Lmax is
equivalent of minimising Tmax.

For these reasons, Lmax can be seen as a very sim-
ple robustness measure for Tmax problems. In the ex-
periments on Tmax a series of runs is done minimising
Tmax, as well as a series minimising Lmax.

For summed tardiness problems, minimising L∑

does not necessarily mean minimising T∑. However,
since for T∑ problems it also seems as a good idea to
reward schedules with jobs finishing before their due
date, for the summed tardiness problems experiments
were done minimising L∑ as well as T∑.
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Fig. 1. The idea in neighbourhood-based robustness. If for some
reason the solution has to be changed, the broad peak may do
much better than the narrow peak, since the solutions lose to x
are still reasonable solutions (compare f(x′) to f(y′)). The search
space of job shop scheduling problems is very different from this
figure, but the basic idea is the same.

4.2. Neighbourhood-based robustness measures

The neighbourhood-based robustness measures are
based on an idea introduced for continuous function
optimisation problems in [4,16]. Robust solutions are
located on broad peaks in the objective function land-
scape, while brittle solutions are located on narrow
peaks (see Fig. 1). In some cases a tradeoff must be
made between the width and height of the solution
peak. In scheduling the idea behind this is that when
a breakdown occurs, maybe a schedule close to the
preschedule can work (partly) around the breakdown.
If this schedule has a low implementation cost for the
original problem, there is a good chance that it will
also have a low implementation cost for the reschedul-
ing problem. For this reason, schedules produced us-
ing the robustness measures can be expected to be
flexible. Since the schedules are created to be good
despite small changes, they can also be expected to be
robust.

The makespan robustness measure introduced in
[10] has the form:

RCmax(s) =
∑

s′∈N1(s)

φ(s, s′)Cmax(s
′),

whereN 1 is a neighbourhood defined on the schedule
searchspace. The neighbourhood works on the pro-
cessing sequence of the operations. The neighbour-
hood N 1(s) of the schedule s is the set of schedules
that can be obtained by interchanging two consecutive
operations on the same machine (see Fig. 2). The func-

Fig. 2. Gantt-charts of two N 1 neighbours. From A to B exactly
one pair of consecutive operations on the same machine 3, jobs 2
and 3, have been exchanged.

tion φ(s, s′) is a weighting function, in [10] φ(s, s′) =
1/|N1(s)| is used.

Following this approach we define the robustness
measures used in this paper:

RP (s) =
∑

s′∈N1(s)

φ(s, s′)P (s′), (1)

where P is L∑, Lmax or F and φ(s, s′) = 1/|N1(s)|.
In order to increase the slack of the schedules, the
robustness measuresRLmax andRL∑ were used instead
of the more obvious measures RTmax and RT∑ (see the
previous section).

Because of the need to evaluate the performance
of a number of schedules for each fitness evalua-
tion, the algorithm running times when minimising the
neighbourhood-based robustness measures were sub-
stantially longer than the running times when min-
imising the other performance measures.

5. The scheduling system

Scheduling was done using a genetic algorithm.
The GA was chosen since it is well suited to
optimise the robustness measures. Furthermore,
GAs have previously been demonstrated to have
an acceptable performance on job shop problems.
More traditional scheduling techniques (i.e. shifting
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bottleneck, branch and bound techniques) have some-
times been shown to outperform GA techniques on
static scheduling problems, but they are not well suited
for the neighbourhood-based robustness measures.

The encoding used in the genetic algorithm is
known as permutation with repetition it was intro-
duced in [2]. In this encoding, a schedule is repre-
sented by a sequence of job numbers, describing the
operation processing order. This representation has
the advantage over other job shop schedule repre-
sentations that it can only represent feasible sched-
ules. Two different decoders were used; a special
version of the Giffler–Thompson (GT) algorithm cre-
ating active schedules with a bias towards non-delay
schedules was used in the total flowtime experi-
ments. This decoder was introduced in [3]. It uses no
problem-specific knowledge and is usable on all job
shop problems with regular performance measures.
In the maximum and summed tardiness problems, a
better performing problem-specific decoder was used.
It used a semi-active decoding of the gene, followed
by a hillclimber. One version of the hillclimber (used
when minimising Tmax, Lmax, T∑ and L∑) improved
the maximum lateness Lmax of the schedule. The other
version (used when minimising RLmax and RL∑ ) im-
proved the robustness measure RLmax . These decoders
are extensions of the decoders for makespan, [15],
and the makespan robustness measure [10]. A more
detailed description of the decoders can be found in
Appendix A.

The use of the Lmax andRLmax hillclimbers in the ex-
periments on summed tardiness is non-standard, since
the hillclimbers do not work on the problem objec-
tives T∑ and RL∑ , but instead improve the related
measures Lmax and RLmax . This choice was made since
preliminary experiments indicated that the Lmax and
RLmax hillclimbing decoders performed better on the
summed tardiness problems than the GT-like decoder.

After decoding the constructed schedule was written
into the gene, in such a way that a semiactive decoding
of the gene would yield the schedule produced by the
hillclimber or GT decoder. The procedure is a kind of
Lamarckian learning, and is often called forcing.

A standard generational genetic algorithm was
used, since preliminary experiments showed that it
outperformed a GA resembling the diffusion GA used
in [15]. The population size was 100, and the algo-
rithm was run for 100 generations. Tournament selec-

tion with a tournament size of two was used. All new
individuals were created using crossover. Each
new individual was mutated with a probability of
0.1. The generalised order crossover (GOX) and
position-based mutation (PBM) operators were used,
see [15]. Elitism was not used, but the all time best
individual was recorded and returned at the end of
the run.

After the completion of the genetic algorithm a hill-
climber searching the N 1-neighbourhood was run on
the best solution found. This hillclimber was run “on
top of” the decoding hillclimbers used in the tardi-
ness experiments. In the case of normal runs using
the Tmax decoding hillclimber the schedule was made
active after the run of the hillclimber using the pro-
cedure used for decoding in [2]. This was done since
preliminary experiments showed that it improved the
algorithm performance.

6. Breakdowns and rescheduling methods

The rescheduling problems used in the experiments
were created by simulating a machine breakdown part-
way through the execution of the preschedule. The
breakdown made the machine unavailable for process-
ing for a predefined period of time (the downtime),
after which it would become operational again. Be-
cause of the definition of the job shop problem, the
machine needed to become operational again, other-
wise the rescheduling problem would be unsolvable.
The rescheduling problems were themselves job shop
scheduling problems, and could be solved using stan-
dard scheduling methods, with the added possibility
of using the preschedule (which is known to be a good
solution to a closely related problem) in the schedul-
ing process.

The rescheduling job shop problems simulating
breakdowns were created from the original problem
and the preschedule in the following way:

1. The preschedule s was generated.
2. A random operation oX of the preschedule was

picked uniformly.
3. The starting time of oX in s was denoted the break-

down time.
4. All operations from the original problem with start-

ing times at the breakdown time or later in s where
included in the rescheduling problem.
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5. In the rescheduling problem, the release time of
each job Jj was set the maximum of the break-
down time and the end of processing time of any
operation of Jj being processed at breakdown time
in s. In the same way, initial set-up time of every
machine Mi was set to the maximum of the break-
down time and the end of processing time in s of
any operation being processed on Mi at breakdown
time.

6. The set-up time of the machine with the breakdown
was set to the breakdown time plus the downtime.
The downtime was the time during which the bro-
ken down machine was unavailable. In all the ex-
periments a downtime of 80 was used (for all the
problems the processing time of each operation is
between 1 and 100).

The effect of this way of simulating a breakdown
was that a random machine would break down pre-
cisely at the time it was supposed to start processing
an operation. The broken down machine would be un-
available for some predefined (and known) time, an
obvious interpretation is that the machine was being
repaired. The scheduler was free to reschedule any op-
erations not yet commenced at breakdown time. The
fact that the scheduler knew at breakdown time exactly
when the broken down machine would become opera-
tional again is probably unrealistic for most real-world
scheduling problems, a future direction of research
could be to remove this assumption.

Fig. 3. Gantt-chart example of a the generation of a reduced rescheduling problem. Left: preschedule. Right: schedule at breakdown.
The breakdown happens at machine M3 and has been marked by the black triangles. The lightly coloured operations will not be in the
reduced rescheduling problem, while the dark coloured operations will be. The operations marked by ‘X’ commence processing after the
breakdown but will not be in the rescheduling problem since they are not affected by the breakdown. After rescheduling these operations
will be scheduled in the same way as they were in the preschedule. An operation is said to be affected by a breakdown if an increase in
the breakdown downtime an lead to a delay of the operation if a right-shifting rescheduling method is used.

After the breakdown rescheduling was performed.
In this context, rescheduling is the same as solv-
ing a job shop problem, perhaps with the aid of the
preschedule. In the experiments, this was defined in
five different ways:

1. Right-shifting. Simply wait for the breakdown to
be repaired and use the scheduling order of the
preschedule. This is expected to yield low quality
results compared to other methods, but at a very
low computational cost.

2. N1-based rescheduling. All N 1 neighbours of the
preschedule are generated, and the one best solving
the rescheduling problem is used. This is the sim-
plest kind of search-based rescheduling used, and is
expected to yield better results than right-shifting,
still at low computational cost.

3. Hillclimbing rescheduling. The preschedule is used
as a starting point for a hillclimber, which finds a
locally optimal solution to the rescheduling prob-
lem. In the Tmax experiments, the Lmax and RLmax

hillclimbers described in Section 5 and Appendix A
were used. Since no efficient hillclimber was avail-
able for the total flowtime and summed tardiness
measures, this kind of rescheduling was not used
in the experiments with these measures.

4. Reduced rescheduling. Generate a reduced problem
as described in [6] by removing all operations not
affected by the breakdown from the problem. An
operation is affected by a breakdown if it succeeds
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Fig. 4. The relationship between the search-spaces of the five
rescheduling methods.

the operation oX in the graph representation of the
preschedule (see Appendix A for the graph repre-
sentation). This problem is solved from scratch us-
ing the GA. Generation of a reduced rescheduling
problem is illustrated in Fig. 3.

5. Complete rescheduling. Solve the rescheduling
problem described above from scratch using the
GA. This is expected to give a high schedule
quality at a high computational cost.

In the experiments involving robustness measures
rescheduling using methods 3–5 minimised the robust-
ness measures, not the “raw” performance measures.

The search-spaces of the five rescheduling methods
have been visualised in Fig. 4. Since for this problem
a large searchspace can be expected to mean a higher
solution quality (and a longer running time), complete
rescheduling can be expected to outperform all the
other rescheduling methods. In the figure, neither of
the search-spaces of hillclimbing and N 1 reschedul-
ing are shown to contain the other. In reality, the part
of the N 1 searchspace not contained in the hillclimb-
ing search-space is very small, while the part of the
hillclimbing search-space not contained in the N 1
search-space is large. For this reason hillclimbing can
be expected to outperform N 1 rescheduling in most
cases. Since the “search-space” of right-shifting is just
a single point contained in all the other search-spaces,
right-shifting can be expected to be the poorest (and
fastest) of the rescheduling procedures. Reduced
rescheduling can be expected to perform worse than
complete rescheduling, while its relationship to the
other rescheduling methods cannot be determined
from the figure, since the reduced search-space is

not contained in and does not contain the other
search-spaces. The sizes of the sets are a bit mislead-
ing in the figure; for many rescheduling problems the
search-spaces of complete and reduced rescheduling
will be much larger than the other search-spaces.

7. Experiments

The purpose of the experiments was to investigate
if the schedules optimised for the robustness measures
perform better after a breakdown and after reschedul-
ing than schedules optimised for the ordinary perfor-
mance measures, and if the preschedule performance
(without breakdowns) was decreased when the robust-
ness measures were optimised. This was done by for
each performance criterion having a series of runs in
which the performance criterion was optimised, and a
series of runs in which the corresponding robustness
measures were optimised. Each series was done on 42
different benchmarks, doing 400 runs on each bench-
mark. During each run a breakdown was simulated,
and the rescheduling problem solved using each of the
rescheduling methods.

The benchmark problems used were the forty prob-
lems from [13] (prefixed by la in the following) and
the problems ft10 and ft20 from [7]. These prob-
lems are artificial; they were generated at random.
They are all rectangular problems in which each job
is processed on each machine exactly once. The prob-
lem sizes (number of jobs × number of machines) are
shown in Table 1.

Since the problems were originally generated with-
out due dates, these were added. The due dates were
generated by for each problem generating a random
active schedule, and setting the due date for each
job to the job’s completion time minus 5% (loose
problems, labelled σ = 0.95) or 15% (tight prob-
lems, labelled σ = 0.85). This procedure was fol-
lowed in order to be able to investigate whether the

Table 1
Sizes of the problems used in the experiments

la01--la05: 10 × 5 la06--la10: 15 × 5
la11--la15,ft20: 20 × 5 la16--la20,ft10: 10 × 10
la21--la25: 15 × 10 la26--la30: 20 × 10
la31--la35: 30 × 10 la36--la40: 15 × 15
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Table 2
Summarised results of the maximum tardiness experiments

Average maximum tardiness

Size Method σ = 0.95 σ = 0.85

P 1 2 3 4 5 P 1 2 3 4 5

10 × 5 Tmax 6.0 56.5 51.4 48.5 41.4 40.4 50.8 111.2 106.5 104.0 99.0 97.9
Lmax 6.0 47.5 42.9 40.3 36.0 35.5 50.8 112.8 108.3 105.6 99.7 98.7
RLmax 6.0 44.5 40.5 39.8 37.2 35.9 53.7 106.7 102.8 102.0 99.6 98.2

15 × 5 Tmax 18.2 66.8 60.5 55.3 44.4 44.0 84.8 138.9 133.2 128.9 118.7 118.1
Lmax 18.2 52.8 48.8 46.0 40.4 40.1 84.8 133.1 127.7 124.2 115.9 115.3
RLmax 18.2 41.5 39.6 39.5 37.8 37.2 85.8 114.7 112.5 112.2 110.6 109.6

20 × 5 Tmax 21.2 71.4 66.0 61.4 46.6 46.2 108.5 166.7 161.3 156.9 144.4 143.8
Lmax 21.2 56.5 53.2 50.1 42.2 42.1 108.4 163.9 158.8 154.9 142.5 142.0
RLmax 21.3 42.5 39.9 38.9 36.7 36.5 109.3 148.9 145.2 143.2 138.0 137.4

10 × 10 Tmax 0.0 45.4 39.0 35.7 25.9 24.7 57.4 112.6 106.5 103.8 95.8 93.8
Lmax 0.0 30.0 25.9 23.7 18.4 17.5 57.3 112.9 107.2 104.4 96.5 94.8
RLmax 0.1 27.1 23.5 22.5 20.4 18.9 64.0 110.5 105.8 103.8 99.8 97.5

15 × 10 Tmax 0.0 36.8 29.7 25.1 13.0 12.5 26.3 80.7 74.3 70.5 59.2 56.9
Lmax 0.0 6.5 5.2 4.5 2.6 2.5 26.2 76.3 70.8 67.1 57.4 55.6
RLmax 0.0 5.2 4.1 3.7 2.5 2.3 27.4 69.2 65.2 63.4 57.2 55.1

20 × 10 Tmax 0.0 35.6 28.2 22.5 9.4 9.0 28.8 84.5 78.0 73.2 61.2 59.2
Lmax 0.0 0.5 0.4 0.3 0.2 0.2 28.7 83.7 77.2 72.3 60.2 57.9
RLmax 0.0 0.3 0.2 0.2 0.2 0.2 28.7 72.6 67.6 65.4 59.4 57.2

30 × 10 Tmax 0.0 33.4 26.5 20.7 8.2 8.2 104.0 154.1 147.1 140.6 127.1 126.0
Lmax 0.0 6.1 4.7 3.9 2.4 2.6 104.1 153.8 146.3 140.0 126.1 126.1
RLmax 0.0 2.2 1.9 1.8 1.4 1.4 97.3 129.1 125.8 123.9 116.3 115.8

15 × 15 Tmax 0.1 38.1 30.1 25.1 12.3 11.8 74.9 126.8 119.4 114.7 103.7 101.9
Lmax 0.1 10.3 8.0 5.0 4.3 4.1 74.8 127.1 119.3 114.6 103.8 102.0
RLmax 0.2 9.3 7.5 6.9 5.3 4.9 80.5 120.3 115.1 113.2 107.8 105.6

tightness of the problems influenced the usefulness
of the robustness measures. The benchmark problems
are available upon request.

7.1. The maximum tardiness experiments

The results of the maximum tardiness experiments
are summarised in Tables 2 and 3. Table 2 reports the
average maximum tardiness found for each problem
size. In the table, there is a subtable for each size
of problem instance (these subtables stretch down-
wards). In each subtable there is a row dedicated to
each scheduling method, labelled with the perfor-
mance measure minimised. The columns labelled 1–5
hold the results of the rescheduling methods, while
the column labelled P holds information about the

preschedule performance. In each table the left part
(labelled σ = 0.95) shows results for the loose prob-
lems, while the right part (labelled σ = 0.85) shows
results for the tight problems.

Table 3 is organised in the same way as Table 2,
and reports the number of problems of each problem
size for which each method was found to give the best
average performance. Since the tardiness distribution
is unknown no statistical testing has been performed;
a scheduling method is simply said to be give the best
result for a given benchmark if the average tardiness is
observed to at least as low as the average tardiness of
the other methods. For this reason and because some
of the averages were very close, the numbers in Table 3
should not be taken to seriously; another set of exper-
iments could change some of the numbers slightly.
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Table 3
Summarised results of the maximum tardiness experiments

Number of best results for each method

Problem size Method σ = 0 95 σ = 0 85

P 1 2 3 4 5 P 1 2 3 4 5

10 × 5 Tmax 5 0 0 0 0 0 4 2 3 3 2 2
Lmax 5 3 4 1 2 2 5 0 1 0 1 1
RLmax 5 2 2 4 3 3 3 3 2 2 2 2

15 × 5 Tmax 5 0 0 0 1 0 4 0 0 0 0 0
Lmax 5 1 1 1 1 0 5 0 0 0 1 1
RLmax 5 5 5 5 4 5 3 5 5 5 4 4

20 × 5 Tmax 5 0 0 0 0 0 5 0 0 0 0 0
Lmax 5 1 1 2 2 2 4 0 0 0 1 0
RLmax 2 6 6 6 5 5 3 6 6 6 5 5

10 × 10 Tmax 5 0 0 0 1 1 3 2 3 2 3 3
Lmax 5 1 1 2 6 4 4 2 1 2 2 1
RLmax 4 6 5 4 0 1 0 2 2 2 1 2

15 × 10 Tmax 5 0 0 0 0 0 2 0 0 0 1 1
Lmax 5 1 4 4 4 4 4 0 0 0 2 2
RLmax 5 4 4 4 4 4 1 5 5 5 2 2

20 × 10 Tmax 5 0 0 0 0 0 1 0 0 0 0 0
Lmax 5 4 3 3 4 4 2 0 0 0 2 2
RLmax 5 5 5 5 4 4 2 5 5 5 3 3

30 × 10 Tmax 5 0 0 0 0 0 5 0 0 0 0 0
Lmax 5 2 2 2 2 2 5 2 2 2 2 2
RLmax 5 5 5 5 5 5 5 5 5 5 5 5

15 × 15 Tmax 3 0 0 0 0 0 2 0 0 1 2 2
Lmax 5 1 3 4 5 5 3 0 0 1 3 2
RLmax 3 4 3 2 1 1 0 5 5 3 0 1

7.1.1. The loose problems, σ = 0.95
Inspecting Table 3, it becomes clear that for all of

the loose problems (σ = 0.95), the standard schedul-
ing method optimising Tmax is outperformed by the
other two methods with respect to rescheduling per-
formance for every single problem instance and for
every rescheduling method. The performance differ-
ence is also clear from Table 2; in all cases the perfor-
mance averages of the Tmax method is well above the
other methods (recall that a low performance measure
indicates a good solution).

Comparing the performance of the neighbourhood-
based robustness measure RLmax to the performance
of the simple robustness measure Lmax, it seems that
for the simple rescheduling methods (labelled 1–3),
the neighbourhood-based robustness measure gener-
ally performs best, although there are a few excep-
tions, especially for the problem sizes 10 × 5 and
15 × 15. The performance difference is largest for

the problems with a high job to machine ratio; for
problem sizes 15 × 5, 20 × 5, 20 × 10 and 30 × 10
there is a substantial difference between the two meth-
ods. Considering the complex rescheduling methods
4 and 5, the neighbourhood-based robustness mea-
sure seems to slightly outperform the Lmax measure on
problems with a high job to machine ratio, while for
the other problems, the Lmax and RLmax methods seem
to do equally well. With respect to preschedule perfor-
mance, the Tmax and Lmax methods seem to do equally
well, while the RLmax method performs slightly worse
than these.

7.1.2. The tight problems, σ = 0.85
When comparing the Tmax and Lmax methods on

the tight problems, there is still a small performance
advantage of the Lmax method in a few cases, but by
and large the two methods perform equally well. The
RLmax method can be seen to outperform the other
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Fig. 5. Left: observed maximum tardiness distribution functions for right-shifting rescheduling for Tmax and RLmax scheduling for the
la06 σ = 0.85 problem. The x-axes indicate maximum tardiness after rescheduling, while the y-axes indicate probability. The error-bars
indicate 95% confidence intervals on the percentiles. The plot for Lmax scheduling was coincidental with the Tmax plot, and was left out
for clarity. Right: same plot for complete rescheduling.

methods in most cases for the simple rescheduling
methods 1–3.

With regard to rescheduling methods 4 and 5,
for the problems with a high job to machine ratio
it usually outperforms the other methods, demon-
strating an improved flexibility of the schedules. For
problems with a low job to machine ratio the RLmax

method is outperformed by the other methods in a few
cases.

Another way of viewing the performance difference
between normal and robust scheduling can be seen
in Fig. 5. Distribution functions for maximum tardi-
ness of the la06 σ = 0.85 problem after reschedul-
ing have been plotted for right-shifting and complete
rescheduling. The distribution functions have been ap-
proximated by experiments; the true distribution func-
tions are unknown. Given a maximum tardiness value,
the probability of ending up with a performance of that
or lower (better) can be read from the graphs. Since
the plots for the RLmax runs are clearly above and to
the left of the plots for the other runs, the superior per-
formance of the RLmax for this problem is evident. The
error-bars on the plots indicate that this result is sta-
tistically significant. An example reading of the plots
could be that for right-shifting rescheduling of RLmax

schedules, there is a 70% probability of ending up with
a schedule of maximum tardiness 170 or lower, while
for the Tmax and Lmax schedules the same probability
is 23%. The la06 problem is typical of the tight 15×5
problems.

Comparing the averages produced by the different
rescheduling techniques, it becomes clear that the con-

siderations at the end of Section 6 hold; the higher the
label number of the rescheduling technique, the better
the performance.

The results of the summed tardiness experiments are
summarised in Tables 4 and 5. The tables are equiv-
alent to Tables 2 and 3 for the maximum tardiness
experiments.

For the loose problems (σ = 0.95), the results
of the summed tardiness problems are resemblant of
the maximum tardiness problems. The RL∑ robust-
ness measure seems to improve the performance of
rescheduling methods 1 and 2 more than the L∑ mea-
sure on all problems, and for problems with a high
job/machine ratio, RL∑ outperforms L∑ on the per-
formance of rescheduling methods 4 and 5 as well. In
some cases this comes at a cost of a slight increase in
preschedule cost. The L∑ measure outperforms the
standard T∑ measure as well, but not as much as RL∑ .

The similarity in behaviour between loose summed
tardiness problems and maximum tardiness prob-
lems does not come as a surprise; in a loose
summed tardiness problem often only one or a few
job will be tardy. In this case, minimising maxi-
mum tardiness and summed tardiness is almost the
same.

For the tight problems, the picture is a bit differ-
ent. For rescheduling methods 1 and 2 the schedules
produced by using RL∑ still seems superior to those
produced using L∑. For the complex rescheduling
methods there only seems to be a little difference
between the performance of the L∑ schedules and
the T∑ schedules, while in several instances the RL∑
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Table 4
Summarised results of the summed tardiness experiments. There is no olumn labelled ‘3’ in the table since no hillclimber optimising T∑

was available

Average summed tardiness

σ = 0 95 σ = 0 85

Problem size Method P 1 2 4 5 P 1 2 4 5

10 × 5 T∑ 16.5 200.3 155.6 103.0 98.6 201.7 493.8 431.8 356.5 346.6
L∑ 16.5 161.9 127.2 88.4 85.2 201.3 497.4 434.4 354.5 346.1
RL∑ 17.1 148.1 119.5 91.4 87.9 218.4 472.8 421.0 364.3 356.4

15 × 5 T∑ 55.6 250.3 202.6 126.8 124.7 372.8 674.8 615.0 504.1 493.2
L∑ 55.1 204.8 173.5 122.0 120.2 371.9 649.2 596.6 499.9 490.0
RL∑ 59.6 160.5 142.7 117.0 115.4 380.5 605.5 567.1 501.4 493.9

20 × 5 T∑ 61.7 315.5 256.9 136.3 134.0 567.1 989.1 915.3 733.0 719.9
L∑ 61.7 237.2 198.9 126.1 124.4 566.9 963.7 895.3 728.2 713.8
RL∑ 62.5 181.4 157.0 117.1 116.7 567.2 912.1 857.8 730.3 720.5

10 × 10 T∑ 0.0 166.5 120.5 51.0 46.8 257.8 550.1 498.7 397.0 380.9
L∑ 0.0 87.7 67.4 32.3 29.9 255.5 556.7 500.8 395.6 382.1
RL∑ 0.9 82.5 63.1 38.7 36.8 287.8 542.0 499.1 425.4 412.2

15 × 10 T∑ 0.0 152.9 105.6 23.6 21.4 138.3 499.2 423.0 268.5 256.3
L∑ 0.0 26.4 17.5 4.4 4.0 132.5 457.6 391.0 259.4 245.4
RL∑ 0.0 18.9 12.8 5.4 5.2 144.0 410.9 363.3 265.8 254.0

20 × 10 T∑ 0.0 167.6 114.5 17.0 16.0 168.6 658.6 555.0 307.5 288.5
L∑ 0.0 6.1 4.1 0.6 0.6 167.3 663.0 563.6 313.8 293.4
RL∑ 0.0 2.0 1.4 0.4 0.3 166.9 560.4 489.6 310.4 293.7

30 × 10 T∑ 0.0 188.2 126.6 14.5 14.1 946.5 1648.6 1483.7 1048.7 1015.2
L∑ 0.0 20.3 13.2 4.1 4.3 945.3 1647.7 1489.3 1046.6 1021.1
RL∑ 0.0 8.0 6.6 3.5 3.5 744.3 1209.7 1112.0 862.6 846.7

15 × 15 T∑ 0.4 156.5 103.7 22.5 18.9 448.2 876.3 785.9 600.2 576.8
L∑ 0.2 48.9 32.7 8.8 7.8 449.2 869.3 779.8 606.2 581.9
RL∑ 1.0 35.4 25.3 12.0 10.1 489.8 824.8 753.7 634.9 606.6

schedules perform substantially worse than the other
schedules, indicating that for tight summed tardiness
problems, flexibility seems to be worsened by using
this robustness measure.

The use of the L∑ performance measure did not
seem to degrade the preschedule cost when compared
to the L∑ experiments. For the tight problems, the
use of the RL∑ measure increased preschedule cost in
many cases, although there were a few intriguing ex-
ceptions in which the preschedule costs found by us-
ing RL∑ were much lower than the preschedule costs
found using the other performance measures.

7.2. The total flowtime experiments

The results of the total flow-time experiments are
summarised in Table 6. The table is equivalent to
the Tables 2 and 3 for maximum tardiness, except

there is only one table. Each entry contains two num-
bers; the first is the number of problems for which
the method was observed to produce the lowest av-
erage, while the second (in parenthesis) is the av-
erage performance. Since there is no lateness-based
robustness measure for the total flowtime experi-
ments, only “ordinary scheduling” (minimising F)
and “neighbourhood-based robustness scheduling”
(minimising RF ) were compared.

Qualitatively the results are similar to the results for
the tight summed tardiness problems. For reschedul-
ing using methods 1 and 2 the RF runs seem slightly
superior, while in many cases they are inferior when
methods 3 and 4 are used. With respect to presched-
ule performance, the two methods seem to have
comparable performance. For some problems sizes F
seems to be better, while on others RF seems to do
best.
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Table 5
Summarised results of the summed tardiness experiments

Number of best results for each method

Problem size Method σ = 0 95 σ = 0 85

P 1 2 4 5 P 1 2 4 5

10 × 5 T∑ 5 0 0 0 0 3 1 3 1 2
L∑ 5 1 1 3 3 3 0 0 2 2
RL∑ 4 4 4 3 2 0 4 2 2 1

15 × 5 T∑ 2 0 0 1 1 2 0 0 2 3
L∑ 5 0 1 2 1 4 0 0 2 1
RL∑ 2 5 5 4 4 1 5 5 1 1

20 × 5 T∑ 4 0 0 0 0 1 0 0 2 1
L∑ 4 0 1 1 1 2 0 0 3 4
RL∑ 2 6 6 6 6 3 6 6 1 1

10 × 10 T∑ 6 0 0 0 0 3 2 2 3 4
L∑ 6 3 3 4 5 4 0 2 3 2
RL∑ 1 3 3 2 1 0 4 2 0 0

15 × 10 T∑ 5 0 0 0 0 0 0 0 3 1
L∑ 5 2 2 5 5 5 0 0 2 3
RL∑ 5 5 5 3 3 0 5 5 1 1

20 × 10 T∑ 5 0 0 0 0 2 0 0 3 2
L∑ 5 3 3 3 3 0 0 0 1 2
RL∑ 5 5 5 5 5 3 5 5 1 1

30 × 10 T∑ 4 0 0 0 0 0 0 0 0 0
L∑ 4 1 1 2 2 0 0 0 0 0
RL∑ 5 5 5 5 5 5 5 5 5 5

15 × 15 T∑ 2 0 0 0 0 3 1 1 4 3
L∑ 4 0 0 4 3 2 0 0 1 2
RL∑ 0 5 5 1 2 0 4 4 0 0

Table 6
Summarised results of the total flowtime experiments

Number of best results for each method (average)

Problem size Method P 1 2 4 5

10 × 5 F 4 (4572.5) 1 (4947.6) 1 (4896.0) 4 (4783.0) 4 (4766.7)
RF 1 (4591.2) 4 (4933.0) 4 (4886.4) 1 (4797.8) 1 (4784.9)

15 × 5 F 5 (9453.3) 0 (10012.3) 1 (9931.7) 5 (9702.8) 4 (9674.7)
RF 0 (9481.1) 5 (9991.2) 4 (9916.7) 0 (9728.7) 1 (9705.6)

20 × 5 F 0 (15590.4) 0 (16344.8) 0 (16231.0) 1 (15818.1) 2 (15758.1)
RF 6 (15538.5) 6 (16196.7) 6 (16099.1) 5 (15782.1) 4 (15744.6)

10 × 10 F 5 (7451.5) 2 (7842.4) 2 (7774.4) 5 (7638.9) 5 (7616.0)
RF 1 (7461.0) 4 (7826.3) 4 (7764.4) 1 (7650.5) 1 (7631.7)

15 × 10 F 4 (12925.0) 0 (13513.1) 0 (13414.3) 3 (13170.9) 3 (13127.9)
RF 1 (12945.6) 5 (13455.7) 5 (13370.7) 2 (13180.3) 2 (13145.8)

20 × 10 F 1 (21243.8) 0 (22027.2) 0 (21885.6) 1 (21476.6) 3 (21382.5)
RF 4 (21230.9) 5 (21885.9) 5 (21772.9) 4 (21448.5) 2 (21376.5)

30 × 10 F 1 (42390.9) 0 (43501.1) 0 (43300.3) 0 (42493.3) 0 (42366.6)
RF 4 (42353.1) 5 (43097.5) 5 (42938.2) 5 (42320.0) 5 (42200.9)

15 × 15 F 4 (17067.9) 1 (17657.9) 2 (17545.3) 5 (17280.8) 5 (17238.7)
RF 1 (17096.2) 4 (17617.1) 3 (17522.4) 0 (17308.4) 0 (17265.5)
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8. Discussion and conclusion

In this paper, the robustness and flexibility of tar-
diness and total flow-time job shop schedules fac-
ing breakdowns have been investigated. The schedules
have been produced with a GA optimising standard
performance (cost), neighbourhood-based robustness
measures and lateness robustness measures (for the
tardiness problems).

The lateness-based robustness measures have been
demonstrated to improve schedule robustness and flex-
ibility for loose maximum tardiness and loose summed
tardiness problems, while they have been found equiv-
alent to standard scheduling on tight problems.

It has been demonstrated that the neighbourhood-
based robustness measures generally seem to improve
schedule robustness for all problem performance
measures tried, and both for tight and loose tardiness
problems. Schedule flexibility in many cases seems
to be improved for maximum tardiness problems
and loose summed tardiness problems, while it does
not seem to be improved for tight summed tardiness
problems and total flow-time problems, in which case
the flexibility is sometimes seen to be worse than
for standard scheduling. For many problems, the im-
provement in robustness and flexibility when using
the neighbourhood-based robustness measures were
found to be better than the improvement gained from
using the lateness-based robustness measures.

The explanation of the poor flexibility of the sched-
ules produced using neighbourhood-based robustness
measures for total flow time and for the deteriorating
flexibility of the summed tardiness schedules as the
problems become more tight may be that when flex-
ibility is sought, the neighbourhood-based robustness
idea works best for problems in which there are few
critical points. A critical point is a part of the sched-
ule which cannot be changed without worsening the
schedule. In makespan problems or maximum tardi-
ness problems this will often be the case. There will
usually be one job which is the “worst”. The other jobs
can be sacrificed in order to alleviate problems (break-
downs) worsening this one job. For loose summed tar-
diness problems there will often only be one or a few
critical jobs as well (if there are only few tardy jobs).
As the problems become more tight the situation be-
comes more diffuse. There is no longer one critical
job, but a number of them making the rescheduling

problem more complex. The higher complexity of the
rescheduling problem may result in a low implemen-
tation cost of the preschedule becoming more impor-
tant for rescheduling performance than anything else,
and decreasing the probability finding a good solution
to the rescheduling problem close to the preschedule.

These observations are valuable if neighbourhood-
based robustness is to be applied to real world schedul-
ing problems or other combinatorial optimisation
problems, since it gives the person working with the
problem a hint as to whether neighbourhood-based
robustness measures will work or not.

Appendix A. The decoders

A.1. The Lmax decoder

The Lmax decoder was used in the Tmax and T∑

experiments. It uses a simple semi-active schedule
builder, followed by a hillclimber minimising Lmax (re-
call that when Lmax is minimised, so is Tmax). When
the hillclimber has terminated, the improved sched-
ule is written back into the gene so that a subsequent
semi-active decoding of the gene will give the im-
proved schedule. The details of semi-active schedule
building and the Lmax hillclimber are in the following.

Semi-active schedule building is the simplest way
of decoding the permutation with repetition represen-
tation. It is done by reading the gene in a left to right
manner, scheduling one operation for every position
of the gene. The gene (2, 3, 2, . . . ) will be decoded
“first process the first operation of job 2, then the first
operation of job 3, then the second operation of job
2, etc.” An illustration of this procedure can be found
on Fig. 6.

Any semi-active schedule can be described using
the graph representation. The schedule is described
by a directed graph, in which each operation is rep-
resented by a node, and in which the arcs represent
“process prior to” relations. An example of this repre-
sentation can be found in Fig. 7. The number in a node
indicates which machine is supposed to process the
operation. The nodes have been organised so that each
row of nodes belongs to the same job. There are two
kinds of arcs: the solid arcs represent the technological
constraints specified by the problem, the dashed arcs
represent machine processing orders, decided by the
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Fig. 6. Semi-active decoding. The genetic string is read in a
left-to-right manner, for each position an operation is fixed in the
Gantt-chart, without considering “holes” left earlier in the chart
(consider the first operation of job 1). This is indicated by the
arrows.

scheduler. A graph of this kind represents a semi-active
schedule if there are no cycles in the graph, and all
operations to be processed on the same machine are
connected by a Hamiltonian path. In a graph like this,
the operation just prior to operation o in the job se-
quence is called the job predecessor of o, PJ(o). The
operation just after o in the job sequence is called the
job successor SJ(o). In the same way, the machine pre-
decessor PM(o) and machine successor SM(o) are the
operations just prior to and just after o in the machine
processing sequence.

The starting time of operation o, often called the
head of o can be calculated:

h(o) = max (h(PJ(o)) + τPJ(o), h(PM(o))+τPM(o)),

(A.1)

where h(PJ(o) and τPJ(o) are set to zero if PJ(o) is
undefined, and the same is done for PM(o). We are
assuming here that the problem has release times and
initial set-up times of zero; removing this assumption
is straight-forward.

Fig. 7. Example graph representation and corresponding Gantt-
chart.

If we denote by Ej the last operation of job Jj ,
the maximum lateness and maximum tardiness of a
schedule can now be calculated:

Lmax = max
j=1,...,N

(h(Ej ) + τEj
− dj ) (A.2)

Tmax = max(Lmax, 0)

In this way, the Lmax (or Tmax) job shop problem can be
formulated as a graph problem in which the task is to
choose the Hamiltonian paths (the machine processing
sequences) such that (A.2) is minimised.

In order to estimate the effect of hillclimbing moves
on schedule performance, the lateness tail l(o) of an
operation in a semiactive schedule s will be defined.
l(o) satisfies

Lmax(s
′) ≥ l(o) + σ

where s′ is the schedule which has the same process-
ing orders as s, and which is semiactive except that
h(o) has been increased by σ (the beginning of pro-
cessing of o is delayed by σ ). For σ large enough,
Lmax(s

′) = l(o)+ σ holds. The lateness tail will later
be used to estimate the effect of hillclimbing moves
in the schedule. When an operation o is delayed (h(o)
is increased), it can affect the schedule performance
in three ways:

1. It is the last operation of a job Jj . In this case we
define

lJ (o) = h(o) − τo − dj .

2. It is not the last operation of a job. The delay of o
may delay the processing of its job successor SJ(o).
In this case define

lJ (o) = l(SJ(o)) + h(SJ(o)) − h(o) − τo.

3. It has a machine successor SM(o). The delay of o
may cause SM(o) to be delayed. Define

lS(o) = l(SM(o)) + h(SM(o)) − h(o) − τo.

If SM(o) is undefined, lS(o) is set to −∞.
The lateness tail is then defined to be

l(o) = max (lJ (o), lS(o)).

An operation is termed critical in a schedule if it
cannot be delayed without worsening schedule perfor-
mance. Operation o is critical if l(o) = Lmax. The set
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Table 7
The moves in the N hc neighbourhood

Block structure Small block (o1, o2) Block begin (o1, o2, SMo2 ) Block end (PMo1 , o1, o2)

Permutations (o2, o1) (o2, o1, SMo2 ) (PMo1 , o2, o1)

(o2, SMo2 , o1)† (o2, PMo1 , o1)†

(SMo2 , o2, o1)† (o2, o1, PMo1 )†

of critical operations in a schedule is called the criti-
cal path. A number of consecutive critical operations
on the same machine are called a critical block.

The hillclimber based on the graph-representation
optimising Lmax will now be outlined. The hillclimber
is an extension of the makespan hillclimber used
in [15]. The hillclimber is best described using two
neighbourhoods. The neighbourhood N hc includes
moves which could lead to cycles in the schedule
graph (leading to infeasible schedules) while the
neighbourhood N hc,feasible ⊂ N hc includes only fea-
sible moves. It can be shown, [15], that a hillclimbing
move (the permutation of a small number of opera-
tions in a schedule) can only improve performance
if it includes operations at the beginning or the end
of a critical block. If the operations o1 and o2 are
consecutive operations in the beginning of a critical
block, all permutations of (PMo1 , o1, o2) in which
o1 and o2 are reversed are in N hc. If o1 and o2 are
consecutive operations at the end of a critical block,
all permutations of (o1, o2, SMo2 ) in which o1 and o2
have been reversed are in N hc. The moves in N hc are
shown in Table 7. If the length of the critical block is
two the only move tried is the permutation in the col-
umn “small block”. If the length of the block is three
or more, the permutations labelled “block begin”
are tried at the beginning of the block, while the
“block end” permutations are tried at the end of the
block.

Bounds on schedule performance after the moves
can be made using local considerations. In the fol-
lowing, unprimed variables refer to the schedule s be-
fore the move, while primed variables refer to the
schedule s after the move. The operators PJ, PM, SJ
and SM refer to the processing sequences before the
move.

The “small block” move has been visualised in
Fig. 8. The heads of o1 and o2 after the “small block”

Fig. 8. Visualisation of the “small block” move.

move can be calculated as follows:

h′(o2)= max (h(PM(o1)) + τPM(o1), h(PJ(o2))

+τPJ(o2)),

h′(o1) = max (h′(o2) + τo2 , h(PJ(o1)) + τPJ(o1)).

The lateness tail of o1 and o2 after the move can be
calculated:

l′(o1)= max(lJ (o1), l(SM(o2)) + h(SM(o2))

−h′(o1) − τo1),

l′(o2) = max(lJ (o2), l
′(o1) + h′(o1) − h′(o2) − τo2).

The lateness of the schedule after the move Lmax(s′)
is bounded by

Lmax(s
′) ≥ Lmax,bound(s

′) = max(l′(o1), l
′(o2))

If o1 or o2 is still critical after the move, Lmax(s
′) =

max l′(o1), l
′(o2) will be the case. Bounds on sched-

ule performance for the other moves can be made in
similar ways.

With respect to schedule feasibility, the moves
marked are safe, since when performed on critical
operations they cannot generate a cycle in the graph
[15]. However, the moves marked ‘†’ can generate
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Fig. 9. Pseudo-code for the Lmax hillclimber.

cycles. To avoid this from happening, the order in
which the moves are considered is important. It can
be shown, [5], that if one of the moves marked ‘†’
generates a cycle in the graph, the performance bound
Lmax,est(s ) on the move marked at the same place
will be at least as low as the performance bound
Lmax,est(s†) of that move. For this reason, when the
beginning or end of a critical block is considered, only
the move which has the lowest performance bound
is included in N hc,feasible. If two moves are tied, the
move marked is included in N hc,feasible.

In each step of the hillclimber, the Lmax,est bound
of every move in N hc,feasible is calculated, and the
move with the lowest Lmax,est bound is implemented.
If this move is found not to improve performance, the
move with the second lowest Lmax,est is implemented,
and so forth. This continues until no improving moves
can be found. Pseudo-code for the hillclimber can be
seen in Fig. 9.

A.2. The RLmax decoder

The RLmax decoder is very similar to the Lmax de-
coder. It uses a simple semi-active decoding, which is
followed by a hillclimber. When the hillclimber has
finished, the improved schedule is written to the gene
in such a way that subsequent semiactive decoding of
it will give the improved schedule.

The RLmax fitness landscape is expected to have ap-
proximately the same large scale features as the Lmax
landscape, since RLmax is simply a weighted average
in a small neighbourhood of Lmax. For this reason, op-
tima for the RLmax problem should be expected to be
close to optima of the Lmax problem. Since the hill-
climber used on Lmax problems is known to be able
to locate these optima, it makes sense to modify it as
little as possible, and let it search the same neighbour-
hood, but let it optimise RLmax instead of Lmax. For
these reasons, the RLmax hillclimber is identical to the
Lmax hillclimber (Fig. 9), except that the line marked
(∗) has been replaced by

if RRLmax(s
′) < RRLmax(s) then,

where RRLmax (s) is an upper bound of RLmax (s):

RRLmax(s)= 1

|N1(s)|
×

∑

s′∈N1(s)

max (Lmax,est(s
′), Lmax(s)).

Due to the definition of Lmax,est, it is clear that
max(Lmax,est(s′), Lmax(s)) ≥ Lmax(s

′), meaning that
RRLmax ≥ RLmax . Since the RLmax optima are proba-
bly coincidental with or close to local Lmax optima,
for locally optimal solutions we expect Lmax,est(s) =
Lmax(s) for the majority of schedules in N 1(s),
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Fig. 10. The modified GT algorithm used for decoding in the total flowtime experiments.

meaning that the RRLmax bound becomes a reasonable
approximation of RLmax .

A.3. The tunable hybrid decoder

The tunable active decoder used in the total flow-
time experiments (normal as well as robust) is due
to [3]. It is a special version of the GT algorithm.
The ordinary GT algorithm produces active schedules,
while the algorithm described here has a parameter δ
which controls a bias towards non-delay schedules. A
non-delay schedule is a schedule in which no machine
is ever kept idle if an operation is ready to start on it. It
can be shown [8] that for all total flowtime problems,
there will be an optimal active schedule. Non-delay
schedules do not have this property, but on average
non-delay schedules have higher performance than ac-
tive schedules. In [3] it was demonstrated that the tun-
able hybrid decoder outperforms a decoder based on
the classical GT algorithm on hard problems. The de-
coder works by building up the schedule operation by
operation, using the order in which the operations are

stated in the genetic sequence to decide which opera-
tions to schedule when.

The decoder is described in detail in [3]. Here, a
brief description of it will be given. Pseudo-code for
the tunable hybrid decoder is displayed in Fig. 10. An
operation is said to be schedulable if all of its prede-
cessors in the technological constraints have already
been scheduled. In the algorithm the set of schedu-
lable operations is kept in A. In the main loop, the
machine M∗ with the earliest potential finishing time
h(o) + τo of an operation o is located. Scheduling an
operation on this machine with a starting time earlier
than h(o) + τo will produce an active schedule. The
earliest possible starting time h(o) of a schedulable
operation on M∗ is located. Scheduling an operation
with this starting time on M∗ will produce a non-delay
schedule. The algorithm produces schedules in be-
tween active and non-delay schedules by creating the
set Q of schedulable operations on M∗ which have po-
tential starting times earlier than a value somewhere
between h(o′) and h(o)+ τo. The parameter δ ∈ [0; 1]
controls this value, the extreme value δ = 0 indicates
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that only non-delay schedules can be produced, the
value δ = 1 indicates that all active schedules can be
produced. In the experiments the value δ = 0.5 was
used, since values in that ball-park were found to give
a good performance in [3].
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