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Abstract

We review the literature on executing production schedules in the presence of unforeseen disruptions on the shop

floor. We discuss a number of issues related to problem formulation, and discuss the functions of the production

schedule in the organization and provide a taxonomy of the different types of uncertainty faced by scheduling algo-

rithms. We then review previous research relative to these issues, and suggest a number of directions for future work in

this area.
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1. Introduction

Manufacturing operations can be faced with a

wide range of uncertainties and production control

is charged with accommodating these in advance

or reacting after the fact. There may be relatively
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little uncertainty, or a plant may experience per-

vasive and rampant chaos. When there are large
amounts of uncertainty, Emerson�s description

may still be appropriate:

. . . but most of the industrial plants of the

world are still in the stage of civilization of

which as to transportation the old freight

wagons and prairie schooners across the

plains were types. They started when they
got ready, they arrived some time, and no-

body knew where they were nor what route

they were taking in between. (Emerson,

1913; p. 251).
ed.

mail to: aytugh@ufl.edu


H. Aytug et al. / European Journal of Operational Research 161 (2005) 86–110 87
Uncertainty and the disruptions associated with
the resulting perturbations have been topics of

discussion since the early 1900s. For example,

Gantt (1919) is known for what we call the Gantt

Chart today, but he developed several different

charts and the one that he considered the most

useful was not the planning chart, but the chart

prepared by the floor workers (operators or

supervisors) providing feedback to the planners
and schedulers––why the plan and schedule did

not execute as planned. They reported back causes

of delays, yield problems, and so forth associated

with material, tools, and machinery. An early

description of the scheduling task explicitly noted

that the planners had to anticipate future difficul-

ties and discount them (Coburn, 1918). Disrup-

tions and uncertainty have been a problem since
the beginning of systemized manufacturing and

remain so today.

There has been an extensive body of research on

production scheduling problems since the original

mathematical formulation of these problems in the

late 1950s. These formulations typically involve

the assignment of scarce resources, usually ma-

chines, to competing tasks over time to optimize
some aspect of system performance either exactly

or approximately. This literature can be broadly

classified into two main areas: deterministic

scheduling research, where all problem parameters

are assumed to be known with certainty, and sto-

chastic scheduling, where at least some parameters

are random variables. Much of the stochastic

scheduling work has assumed that all parameters
are random variables, and has thus focused on

local control policies such as dispatching rules

aimed at minimizing some measure of perfor-

mance in the expectation. Most of these methods

seldom use any information about the global state

of the shop, or try to create a schedule for the

entire shop prior to its execution. In deterministic

scheduling research a larger view is taken and
multiple machines are often modelled. The deter-

ministic approach is to plan the work through the

machines over a period of time in the best way

possible given a specific objective to optimize. The

implicit assumption here is often that a schedule

can be executed directly as developed. However, in

recent years many authors have recognized that
this is an unlikely scenario in many manufacturing
environments, and have made efforts to extend the

deterministic approaches to situations with some

form of uncertainty. The basic assumption in

much of this work, which forms the focus of this

paper, is that a system that works in a determin-

istic environment can be engineered to work under

at least certain stochastic conditions.

A pervasive assumption in the deterministic
scheduling field has been that the schedule once

released to the production floor can be executed

as planned. However, many production systems

are subject to executional uncertainties that

prevent the execution of a production schedule

exactly as it is developed. Examples of such

disruptions include machine failures, quality

problems, arrival of urgent jobs and a myriad of
other possibilities. Theoretical scheduling re-

search also typically fails to consider the orga-

nizational discipline needed to execute a schedule

correctly. Thus, for example, the specific incen-

tives used for the shop-floor personnel may

cause them to override the schedule, in effect

introducing another type of uncertainty. The

inability of much scheduling research to address
the general issue of uncertainty is often cited as

a major reason for the lack of influence of

scheduling research on industrial practice. Al-

though in recent years there has been a steadily

increasing volume of research in this area, we

believe there are several different approaches that

have developed largely in isolation, and need to

be evaluated and discussed together to provide a
broad perspective on this important problem

area.

For the purposes of this paper, we shall restrict

ourselves to the type of scheduling problem

encountered in manufacturing environments,

where the basic problem is to allocate machines,

and perhaps other resources such as tooling or

operators, to jobs in order to exactly or approxi-
mately optimize system performance. Hence we

shall ignore a number of other decisions, such as

order release, due date setting and lot sizing, which

are often considered part of the larger production

planning decision, and whose solutions clearly af-

fect the scheduling function. We shall use the term

‘‘schedule’’ to denote an assignment of machines
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to jobs for a specific period into the future, re-
ferred to as the schedule horizon. We shall also be

primarily concerned with the issue of how to exe-

cute a given schedule on the shop floor in the

presence of uncertainties, rather than discussing

how different types of schedules can be constructed

in the first place. Finally, we shall focus our review

primarily on work over the last decade, since much

of the earlier work has been reviewed by other
authors (e.g., Harmonosky and Robohn, 1991;

Suresh and Chaudhuri, 1993; Szelke and Kerr,

1994). However, in contrast to the previous review

papers, which tend to use a taxonomy of research

based on solution techniques (conventional, arti-

ficial intelligence, etc.), we try to develop a tax-

onomy based on the formulation of the scheduling

problem used. We make no pretence to have pro-
vided an exhaustive list of references in this rapidly

expanding research area, but we feel we have

provided a synthesis of the main research direc-

tions.

We believe that in order to understand the dif-

ferent issues involved in developing effective

scheduling methods for environments with execu-

tional uncertainties, one needs to examine the
ways in which the organization uses the produc-

tion schedule––in other words, why a schedule is

necessary or helpful in the first place. We then

introduce and discuss a taxonomy for viewing and

classifying production uncertainties. Following

these discussions, we can examine a number of the

different problem formulations in the scheduling

literature and discuss their various strengths and
weaknesses. We then examine issues associated

with schedule execution in automated settings

when uncertainty exists. We conclude with sug-

gestions for future research.

2. Purposes of scheduling

There are a number of reasons why a manu-

facturing organization might want to develop a

production schedule for some time period into the

future. Younger, in perhaps the first book dedi-

cated to scheduling, posed it this way:

Well-organized and carefully executed work

routing, scheduling, and dispatching are nec-
essary to bring production through in the re-

quired quantity, of the required quality, at

the required time, and at the most reasonable

cost. (Younger, 1930, p. iii).

These goals are the highest level and provide the

most obvious reasons why scheduling is per-

formed. More specifically, Reinfeld who was
instrumental in the founding of the American

Production and Inventory Control Society

(APICS), viewed the problem as:

Production control is the task of predicting,

planning and scheduling work, taking into ac-

count manpower, materials availability and

other capacity restrictions, and cost so as to
achieve proper quality and quantity at the

time it is needed and then following up the

schedule to see that the plan is carried out,

using whatever systems have proven satisfac-

tory for the purpose. (Reinfeld, 1959, p. 66).

In the simplest of terms, these statements pro-

vide a basis for the mathematical formulations and
computer systems that create schedules. They both

note the cost objectives, quality goals, delivery

concerns, and quantity targets. These are the

technical or mechanical aspects of scheduling. The

basic assumption when one develops a production

schedule is that this will serve as an instruction to

the shop floor, causing the shop to execute events

in the sequence and timing suggested in the sche-
dule. In many systems, this involves developing a

schedule under certain assumptions as to the exe-

cution environment (most commonly, that no

disruptions will occur) and releasing it to shop-

floor personnel to guide their decisions. We will

refer to this type of schedule as a predictive sche-

dule. In an environment with tightly integrated

automation, it may well be that the predictive
schedule drives execution directly by interacting

with machine controllers and other system com-

ponents. Wiers (1997) provides a taxonomy and

categorization schema for matching solution meth-

ods (e.g., decision support systems, optimization

code, etc.) to a situation based on the degree of

uncertainty––the tightly integrated automated sit-

uation being called a smooth shop while a dynamic
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open job shop with significant uncertainty is called
a stress shop.

In almost any environment other than what

Wiers would categorize as a smooth shop, it is

highly unlikely that the predictive schedule will be

executed exactly. Disruptions will require modifi-

cations to permit execution, and perhaps create

opportunities to improve shop performance based

on the situation encountered after a disruption.
Hence, there may be substantial deviations from

the predictive schedule over the course of its exe-

cution due to unforeseen disruptions such as ma-

chine breakdowns or shop-floor personnel

overriding the predictive schedule. The process of

modifying the predictive schedule in the face of

executional disruptions is generally referred to as

reactive scheduling or rescheduling. The nature of
the schedules developed in reaction to disruptions

depends on the nature of the realized disruptions

and the capabilities of the execution agent reacting

to them. The reaction generally takes the form of

either modifying the existing predictive schedule,

or generating a completely new schedule that is

followed until the next disruption occurs.

The following subsections explore other pur-
poses of scheduling related to uncertainty.

2.1. As a capacity check for higher-level reasoning

In this situation a higher-level production

planning system will verify that it has the capacity

to produce the planned work over a given time

period by developing a complete, finite-capacity
production schedule and making allocations of

resources to jobs at specific points in time. Dauz-

ere-Peres and Lasserre (1994) give an example of

this approach. In industrial practice, there are

several systems that perform the capacity check by

performing a deterministic simulation of the pro-

duction system in question (Pritsker and Snyder,

1997). Sun and Lin (1994) present an interesting
approach in this line based on considering back-

ward scheduling from due dates at the level of

individual operations. The backward scheduling

problems are solved using a rolling horizon pro-

cedure, but there is limited experimental testing of

the effectiveness of the approach. A number of the

advanced planning and scheduling (APS) systems
on the market today also use this approach
(Musselman and Uzsoy, 2001). Note that in this

case, there is not necessarily a thought that the

schedule will ever be executed as developed––the

purpose is to verify that there exists at least one

capacity-feasible resource allocation for the work

planned over this period.

In practice, planners do a capacity check to also

identify peak load intervals and lower periods. The
peak load situations become critical when uncer-

tainty increases as there are fewer degrees of free-

dom for recovery. Any elective actions (i.e.,

planned activities) that may increase uncertainty

are routinely moved away from these peak

capacity zones. The lower load zones have a

greater potential for absorbing uncertainty and the

planners schedule high-risk work for these periods.
The peak zones are also identified as being of

interest if critical work is planned––backup plans

are prepared and some activities put into action

just-in-case. Not all planners and schedulers do

this type of reasoning, but some do (McKay et al.,

1995).

2.2. To provide visibility of future plans within the

shop

A major function of the production schedule,

which we feel is often overlooked in the research

community, is that of providing visibility of future

actions for the rest of the organization, and for

internal and external suppliers and customers. The

production schedule may serve to identify poten-
tial capacity conflicts at critical resources, permit-

ting management to take action to avoid them. In

many ways, it allows the astute shop-floor man-

ager to organize production resources to best

support smooth schedule execution. We often hear

from industrial practitioners that production sys-

tems gain a certain momentum, and that violent

schedule changes throw the floor into confusion.
We believe that this refers to the effects of using the

schedule for visibility. Shop-floor personnel will

use the schedule to guide their actions, positioning

work, tooling and operators in a way that will

smooth the execution of the schedule. They will

look at the schedule for situations implying

resource conflicts or tight constraints and
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orchestrate the situation before, during, and after
the expected event (McKay et al., 1995). A sig-

nificant schedule change may thus require a sig-

nificant amount of reorganization on the shop

floor as machines are retooled, operators reas-

signed and work in progress interrupted to bring

the system in line with the new schedule. We shall

refer to this process of bringing resources in line

with a new schedule as system reconfiguration. The
greater the number of tightly coupled decisions,

the more difficult the reconfiguration. By exten-

sion, this logic applies to customers of the shop in

question who plan their activities based on the

planned completion times of activities in the ori-

ginal schedule that has now been changed.

This objective of providing visibility has gained

new importance with the trend towards increasing
collaboration between the elements of supply

chains. Enabled by Internet technology, it is rap-

idly becoming common for companies to share

their production schedules with their suppliers on

a continuous basis, with the expectation that the

suppliers will use this information to provide ser-

vices such as just in time material delivery. In this

environment, changes to the production schedule
at a downstream node of the supply chain can

cause significant disruptions of upstream opera-

tions. The potential impact of such disruptions can

be quite high, as evidenced by the well-studied

‘‘bullwhip effect’’ (Chen et al., 2000) in supply

chains, that causes variation at downstream nodes

in the supply chain to be amplified at upstream

stages.

2.3. To provide degrees of freedom for reactive

scheduling

When there is a period of uncertainty and

instability, it is important to have capacity on the

resources that have the greatest capability for

resolution and re-stabilization (McKay et al.,
1995). Schedulers and planners first try to lock in

or assign resources that have low flexibility and for

which there are few alternatives. This allows the

scheduler to use the more flexible resources to

solve the hard problems as schedules get tight.

This also provides the planner the proverbial Swiss

Army Knife when a problem occurs and some
spare capacity exists on the flexible resource. The
objective of this type of scheduling is to react

without affecting large portions of the factory and

causing chain-reactions. If the key resource is

committed early on, pre-empting that resource to

help with reactive problem-solving can cause a

ripple effect throughout the schedule and plant

organization.
2.4. To evaluate performance

Another potential use for a schedule is to pro-

vide a yardstick by which to measure the perfor-

mance of shop-floor personnel. In this situation,

a predictive schedule is used to set goals which

the shop-floor personnel should achieve. The per-

formance of shop-floor personnel is evaluated at
the end of one or more planning periods using

the deviations of the historical schedule from the

predictive. This use of schedules is important in

that it affects the way shop-floor personnel will

react to unforeseen disruptions, influencing the

evolution of the historical schedule as distinct from

the predictive. Najmi and Lozinski (1989) give an

example of this use of predictive schedules. When
using a predictive schedule for this purpose, it is

important that all parties sign off on the plan as

feasible and doable when issued. It is not unusual

for a predictive plan to be totally unrealistic and

political in nature––neither feasible nor reason-

able. Such a questionable plan should not be used

to measure performance.

Shop-floor personnel are not the only targets
for evaluation. Gantt (1919) discusses how a

schedule or plan can be used to gauge the perfor-

mance of management (as distinct from the floor

personnel). Management�s job was to create a sit-

uation in which the worker could do the desired

work at the time desired and with the desired re-

sults. If tooling was not ready––it was a manage-

ment issue. If material had not arrived––it was
management�s fault. The job of management was

to coordinate and manage the resources so that

execution was possible. Although scheduling and

scheduling feedback could be used for manage-

ment evaluation, we have not encountered this

specific use in any of our field work.
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2.5. To avoid further problems

In a strictly reactive situation without any feed

forward control, the future is taken as it occurs––

everything is a surprise and there is no active

mitigation of possible side-effects and problems.

McKay et al. (1995) showed that a major portion

of the scheduler�s sequencing and scheduling tasks
related to minimizing the impact of future events

whose occurrence was considered highly probable.

Some events might be in the immediate future

(e.g., did the technician successfully repair the

wave soldering machine?) or elsewhere on the

planning horizon (e.g., a machine upgrade is

scheduled for next month, will it be successful).

This type of special sequencing can be considered a
conservative or risk-averse posture in which a

short term sub-optimization strategy is used to

achieve a greater system level performance. The

underlying assumption is that if the impact occurs

as predicted, the amount of work to resequence,

the amount of rework, the amount of lost value-

added activities will be reduced. Without the spe-

cial decision process analysing the uncertainty, the
full force of the perturbation occurs.

The number of different potential uses for a

production schedule underscores the need for a

satisfactory execution of the scheduling task, or at

least a feasible plan for the future. To be satis-

factory or feasible the schedule must address

uncertainty. On the other hand, the diversity of the

groups affected by the schedule also makes the task
of measuring schedule quality more difficult, since

the schedule is used for different purposes by dif-

ferent groups, which are often trying to achieve

different goals. Gary et al. (2000) discuss this issue

in detail. The inclusion of uncertainty and how to

measure the quality of uncertainty inclusion

makes the measurement of schedule quality even

harder.
Given these purposes of the scheduling activity,

we can now consider the various types of uncer-

tainty that may be encountered in a schedul-

ing environment. In the following section we

provide a taxonomy of executional uncertainties

that will allow us to put existing work in per-

spective.
3. A taxonomy for uncertainty

In Section 1, we briefly outlined five purposes of

scheduling beyond that of simple resource alloca-

tion and sequencing and discussed how the pur-

poses focus on the meaning of uncertainty to a

plan and planner. To a human planner and to

those interpreting a plan on the factory floor,
uncertainty is not simply an independent stochas-

tic concept confined to one parameter of the

problem. Uncertainty in a real manufacturing sit-

uation is a complex phenomenon. Variability in

processing speed has a different impact on the

situation if the variation occurs early in the day or

close to the end of a shift. Uncertainty that affects

yield is more important after a few operations
when value has been added and replacing the

scrapped material in time to meet a due date is

difficult, as opposed to yield variation in the very

first operation. Uncertainty that affects material

availability may be more important than time

impacts––sometimes, sometimes not. Operator

performance may be more uncertain just before or

after a long weekend than mid-week. Uncertainty
experienced on the night shift may have more

impact than the same uncertainty encountered

during the day when additional support staff and

management are available for problem-solving.

Hence, when the term uncertainty is used, what is

meant? What does the uncertainty mean to the

situation? How does the specific type of uncer-

tainty affect predictive and reactive scheduling?
What type of uncertainty does a specific modelling

approach address? What type of uncertainty

impact is incorporated? In this section, we intro-

duce a preliminary taxonomy that can aid in

organizing scheduling research including uncer-

tainty. We suggest that the explicit consideration

of uncertainty––how it arises, what it means, what

the immediate and long term impacts are, and
what the interdependencies are––should affect

the problem formulation and solution processes

we use in addressing the scheduling problem.

While it is clearly impossible (and maybe even

undesirable) to explicitly address all conceivable

sources of uncertainty in a scheduling decision, it

is essential that the most significant be considered
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for even reasonably successful execution to be
possible.

There appear to be three key dimensions of

uncertainty––cause, context, impact––that can

help to categorize problem formulations and pro-

cesses. For example, cause may be tooling not

available, the context is the bottleneck machine on

Monday morning, and the impact is a delay in

setup––the machine cannot start when expected.
Given this framework, it is possible to consider

different options for reactive scheduling, and to

consider how existing research addresses the real-

ity of the situation. To explain the meaning of

cause, context, and impact, the dimensions can be

further decomposed.

Cause can be viewed as object (e.g., material,

process, resource, tooling, personnel) and state

(e.g., ready, not ready, high quality, low quality,

damaged, healthy). As we will discuss in later

sections, the majority of current scheduling re-

search focuses on resource oriented uncertainty––

variations in processing times, mean time between

failure and mean time for repair. We are not aware

of research that explicitly models and discusses

such uncertainty causes as lower than expected
material quality (material is typically modelled as

good or bad, not degrees of goodness which is

possible in the real world).

Context refers to the environmental situation at

the time of the scheduled event (e.g., nothing

special, resource just repaired or upgraded, when

in week or day or shift (if it matters), experience or

training of the crew). Essentially, is there anything
about the context that would alter expectations for

processing time, yield, or some other performance

metric? The situation is either context-free or

context-sensitive. A context-free situation would

require no additional information or special deci-

sion making while a context-sensitive formulation

would have information about the context and

associated implication. The majority of research is
context-free. That is, each day or time interval is

viewed as the same as any other and so forth.

Recent research such as O�Donovan et al. (1999),

McKay et al. (2000), and Black (2001) include

context information in the modelling and can be

considered context-sensitive.
Impact refers to the result of the uncertainty. Is
the impact a shortened or elongated processing

time? Does the uncertainty affect the starting and

finish times for setup? Does the uncertainty impact

one or multiple resources? Does the perturbation

impact material availability, or direct product

cost? Is only one job impacted or do interdepen-

dencies exist that result in multiple tasks being

affected? In general terms, the impact can be cat-
egorized as time, material, quality, independent or

dependent, and context-free or context-sensitive.

Independent and dependent refer to possible rela-

tionships to other jobs and activities. Research has

typically focused on independent job streams in

which there are no cross constraints and relation-

ships between the work being scheduled. Context

is also present on the impact side––not all jobs or
situations react the same way to the same pertur-

bation. Context-free is when one assumes that jobs

do not vary in their response. The aversion

dynamics heuristic (McKay et al., 2000; Black,

2001) is an example where the impact is time and

the jobs are context-sensitive. The aversion

dynamics concept uses information about a re-

source�s recovery from an event and the sensitivity
of the work to perceived risk to dynamically sub-

optimize and take a conservative posture around

an event. These types of information are contex-

tual and limit the generality of the heuristic, but

capture an important element of the real-world

scheduling problem.

3.1. Inclusion

The cause, context, and impact dimensions are

on the problem side. The existence or orientation

of these characteristics in existing research can be

categorized accordingly. There are two other

questions that can help organize the research re-

sults––Are the factors explicitly taken into account

when crafting the predictive schedule? or Are the
factors accommodated in some fashion when re-

scheduling is performed? For example, the place-

ment of intelligent slack is an example of the

former (O�Donovan et al., 1999) and the Averse-I

heuristic in aversion dynamics is an example of

the latter. Averse II and III in Black (2001) show
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how to use aversion dynamics in a predictive
fashion.

In summary, uncertainty is a large and complex

topic and some form of categorization schema is

warranted. We have proposed four preliminary

dimensions that may be suitable for this purpose.

The taxonomy is:

• Cause––object, state;
• Context––free or sensitive;

• Impact––time, material, quality, dependency,

context;

• Inclusion––predictive and/or reactive.

These different aspects of uncertainty should be

considered in terms of problem definition. How-

ever, any optimization approach to scheduling
must also consider the costs imposed on the system

by the disruptions.

There are at least two main types of costs that

need to be considered––those related to the per-

formance of the system against whatever conven-

tional scheduling criteria, such as due date

performance or flow time, are being considered,

and those relating to the costs of system recon-
figuration due to reacting. The costs of system

instability and reconfiguration can be considered

from three perspectives:

(i) costs that are incurred in anticipation of the

disruption but which are wasted since the dis-

ruption does not occur,

(ii) costs incurred in anticipation of the uncer-
tainty when the perturbation takes place,

(iii) costs incurred after or during the perturbation

as the system is reconfigured.

McKay et al. (2000) and Black (2001) investi-

gated tardiness issues when conservative postures

are taken when uncertainty is perceived. They find

that sub-optimization for a limited time offers
significant benefits when the problem occurs and

only minor penalties when the prediction is wrong.

Mehta and Uzsoy (1998, 1999) have shown that

taking a conservative approach to completion time

estimation by using safety lead time buffers derived

from statistical information on machine failures

provides significantly improved completion time
estimates at the cost of minimal degradation in
more conventional measures related to due date

performance.

We would suggest that the approach to take

regarding a scheduling problem with executional

uncertainties depends to a great extent on the

robustness and reactive capabilities of the situa-

tion being scheduled and the degree of indepen-

dence that exists in the factory. In research and in
scheduling technology, dispatching based sched-

uling procedures that assign jobs to machines

dynamically as machines and jobs become avail-

able and that provide very little visibility into the

future are prevalent. This suggests that in many

manufacturing environments reconfiguration costs

are at least perceived to be negligible (at least by

developers and researchers) and that almost
everything is considered to be independent and

robust. If this is the case, then the need to include

uncertainty characteristics in the modelling is

minimized. On the other extreme, in an environ-

ment with significant setup times, reconfiguration

may require shutting down equipment for ex-

tended periods of time, causing significant losses in

production. In cases where there is little flexibility
and the ability to recover is limited, the problem-

solving can be expensive and lengthy. Examples of

such environments are often found in the chemical

process industries, where tightly integrated equip-

ment, limited intermediate storage space, signifi-

cant setup times and volatile intermediate products

can combine to render reconfiguration prohibi-

tively costly in terms of lost output alone. Unfor-
tunately, in many manufacturing environments

most of the costs of reconfiguration and problem-

solving remain hidden from shop personnel, since

these may involve changes and disruptions in other

departments and customer sites throughout the

supply chain. Another important difficulty in

complex multistage manufacturing systems is the

fact that the effects of a disruption on system
output may only be seen after a significant amount

of time has elapsed, making it very difficult to link

the disruption to its consequences.

To conclude, it is difficult to make a clear

statement about the nature of the problem unless

we can define the types of disruptions, describe the

context, and define the actions that can be taken in
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the face of the disruptions. There is broad evidence
in the literature that different types of reconfigu-

ration actions are appropriate for different types of

disruptions. In the following section we will give a

brief overview of existing literature in the domain

of scheduling with executional uncertainties. We

will then conclude the paper with a discussion of

some directions for future research and some of

the weaknesses in the existing paradigms.
4. Existing research on scheduling with uncertainties

Over the last two decades a significant volume of

research on the issues of scheduling with execu-

tional uncertainties has begun to emerge. We will

review this research based on the problem formu-
lation used: completely reactive approaches, robust

scheduling approaches, and predictive–reactive

scheduling. The latter of these is by far the most

studied, and we therefore examine a number of

specific issues related to this approach in more de-

tail. We then proceed in the next section to examine

issues associated with scheduling fully automated

systems in the face of uncertainties, which has some
interesting differences from those considered in

much of the literature where the presence of hu-

mans to remove deadlocks is assumed.

4.1. Completely reactive approaches

This category of modelling approaches does not

take any of the cause, context, impact, or inclusion
issues into consideration per se. When looking for

uncertainty principles, there is a void. The work is

scheduled for the immediate future using norma-

tive information and assumptions and then nature

takes over for the execution. These completely

reactive approaches are characterized by least

commitment strategies such as real-time dispatch-

ing that create partial schedules based on local
information. Dispatching (Bhaskaran and Pinedo,

1991; Haupt, 1989; Holthaus and Rajendran,

2000; Ramasesh, 1990) examines the jobs currently

available at the machine in question, and some-

times in its immediate environs. The next job to be

processed is selected from among these by sorting

and filtering them according to predefined criteria,
and selecting the job at the head of the resulting
list. This approach has many practical advantages.

Its computational burden is in general extremely

low, and the rules are usually intuitive and easy to

explain to users. Empirical evidence from both

industry and academia (e.g., Ovacik and Uzsoy,

1997) has repeatedly shown that for complex sys-

tems with high competition for capacity at key

resources and relatively low uncertainty, global
scheduling has the potential to significantly im-

prove shop performance compared to localized or

myopic dispatching. However, it should be noted

that although these approaches do not exactly

build a schedule, they do consider information

from higher-level production plans through

parameters such as due dates. A number of the

more sophisticated dispatching procedures can
invoke complex rules that allow them to consider

the state of the system, at several different ma-

chines, and to take conditional actions based on

this state. This type of policy has been extensively

implemented in the semiconductor industry

(Mohan and Clancy, 1990; Golovin, 1989).

A natural extension of the dispatching ap-

proach is to allow the system to select dispatching
rules dynamically as the state of the shop changes.

Early work in this area is that of Wu and Wysk

(1989), who examine the problem of dispatching

rule selection in a flexible manufacturing system

environment. They divide the time horizon into

shorter intervals. At the beginning of each interval

a variety of dispatching rules are simulated, and

the rule that yields the best performance is imple-
mented for the next time period. A number of

other authors have followed this approach and

extended it in various ways, e.g., Kim and Kim

(1994) and Jeong and Kim (1998). An extensive

literature has evolved on the use of machine

learning to select dispatching rules based on the

state of the system. This literature is reviewed by

Aytug et al. (1994a). One example of this work is
by Piramuthu et al. (1991), who first use a simu-

lation model of the manufacturing system under

study to develop a characterization of how differ-

ent dispatching rules perform in the system under

different operating conditions. They then apply an

inductive learning algorithm to this data to de-

velop a decision tree that selects a dispatching rule
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whenever a significant change in system state is
identified. Chen and Yih (1996) use a neural net-

work to predict the dispatching rule to use under a

certain system state. Aytug et al. (1994b) use ge-

netic learning to select a population of rules for a

given system configuration.

Another extension of these completely reactive

approaches are those based on a number of inde-

pendent, intelligent agents each trying to optimize
its own objective function, which may differ from

those of other agents. A number of researchers

(e.g., Lin and Solberg, 1992; Duffie and Piper,

1987) have advocated scheduling systems of this

nature, where a bidding mechanism is used to re-

solve conflicts between different agents. While the

analogy to free-market economics is interesting,

this approach still requires that the objectives of
the individual agents be set in a manner that will

ensure good overall system performance, which is

not clear how to do. In addition, most of these

approaches have been tested in the context of

flexible manufacturing systems with relatively few

machines.

4.2. Robust scheduling approaches

The next level of sophistication is shown in the

second grouping of research results. In this

grouping, the machine availability (cause––ma-

chine not ready) is modelled in some fashion using

other context-free assumptions and with the only

direct impact being machine availability to execute

work. The robust scheduling approaches focus on
creating a schedule which, when implemented,

minimizes the effect of disruptions on the primary

performance measure of the schedule. One way in

which this is done (Daniels and Carrillo, 1997;

Daniels and Kouvelis, 1995; Kouvelis and Yu,

1997; Kouvelis et al., 2000) is to consider a range

of scenarios representing the results of different

problem realizations (in this context, different
realizations of disruptions to the schedule). A

solution is then developed that optimizes perfor-

mance under the worst possible scenario, with the

objective of developing a schedule that will per-

form relatively well under a wide range of possible

problem realizations. Several studies show that

this approach often leads to significant improve-
ments without degrading the expected perfor-
mance over all scenarios significantly.

A second approach (Leon et al., 1993; Wu et al.,

1999) is to minimize the expected degradation in

performance measure, where the degradation is

measured as the difference in objective function

value between the predictive and realized sched-

ules. Leon et al. (1993) also include a number of

reconfiguration-related costs, such as the cost of
changes in the start times and the cost of sequence

changes. These approaches do not explicitly con-

sider execution issues, since the formulation ac-

counts for the fact that there will be disruptions

prior to the execution of the schedule. The issue of

predictability and graceful transition from a cur-

rent system state is thus not considered. The im-

plicit assumption is that the predictive schedule
will be executed as is, at least as far as is feasible.

Taking a different approach, Mehta and Uzsoy

(1998, 1999) and O�Donovan et al. (1999), develop

predictive schedules to maximize the predictability

of the realized schedule in both single machine and

job shop environments subject to machine failures

for a given rescheduling method. The former au-

thors consider the primary performance measure
of maximum lateness, while the latter consider the

total tardiness. This is accomplished by estimating

the effects of machine failures on the schedule and

increasing the estimated job completion times by

this amount to ensure that predicted job comple-

tion times are accurate estimates of those realized

as execution proceeds. Results consistently show

that significant benefits in schedule predictability
can be obtained with minimal degradation of the

primary performance measure. Bollapragada and

Sadeh (1996) apply this approach to the job shop

scheduling problem with total earliness–tardiness

as performance measure. McKay et al. (2000)

introduce a dynamic rescheduling approach that

sub-optimizes for a period of time to allow the

manufacturing situation a chance to re-stabilize
and then progressively optimizes. Singer (2000)

applies this idea to minimizing total tardiness in a

job shop with uncertain processing times, obtain-

ing similar results.

These approaches can be viewed as a form of

under-capacity scheduling, where the amount of

work scheduled in a time period is based on the
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historical performance of the equipment. Yel-
lig and Mackulak (1997) provide an alternative

formulation of this approach motivated by the

control-theoretic models of Gershwin and his co-

workers (e.g., Kimemia and Gershwin, 1983)

Ashby and Uzsoy (1995) illustrate the perfor-

mance of a particular under-capacity scheduling

scheme in the face of uncertain arrivals of such

orders. Horiguchi et al. (2001) illustrate the same
ideas in the context of production planning in a

semiconductor manufacturing facility.

4.3. Predictive–reactive scheduling

In predictive–reactive scheduling, scheduling is

presented as a two step process. First, a predictive

schedule representing the desired behavior of the
shop floor over the time horizon considered, is

generated. This schedule is then modified during

execution in response to unexpected disruptions.

The schedule actually executed on the shop floor

after these modifications is called the realized

schedule. The two main questions are when to ini-

tiate a rescheduling action and what that resched-

uling action should be. Hence our discussion in this
section will begin by examining the issue of when to

initiate a rescheduling activity. We shall then dis-

cuss different formulations of the problem faced

when a rescheduling action has been decided upon.

4.3.1. When to reschedule?

Regarding the first question, when to resched-

ule, the basic question that needs to be answered is
when a disruption or an event has sufficient po-

tential impact that a new schedule must be gener-

ated or some more localized remedial action taken.

Church and Uzsoy (1992) provide a rough taxon-

omy of existing approaches beginning with two

extremes. Continuous rescheduling approaches take

rescheduling action each time an event that is

recognized by the system, such as the arrival of a
new job, occurs. Periodic rescheduling, on the other

hand, defines a basic time interval T between re-

scheduling actions during which rescheduling ac-

tions are not permitted. Rescheduling actions are

taken at times kT , where k is an integer. These

points in time where rescheduling may be per-

formed are referred to as rescheduling points. Any
events occurring between rescheduling points are
ignored until the following rescheduling point.

Finally, they define event-driven rescheduling, in

which a rescheduling action can be initiated upon

the recognition of an event with potential to cause

significant disruption to the system. Both contin-

uous and periodic rescheduling can be viewed as

special cases of event-driven rescheduling.

Clearly, continuous rescheduling runs the risk
of initiating rescheduling activity in the face of

events that do not cause significant disruption,

expending computational resources and poten-

tially causing unnecessary changes in the schedule

with associated ill effects on the shop floor. The

obvious drawback of periodic rescheduling is that

it ignores events occurring between rescheduling

points, which in an extreme case may render the
current schedule impossible to execute, and in less

serious situations runs the risk of yielding poor

schedules. Hence a combination of the periodic

and event-driven approaches appears attractive, in

which a periodic rescheduling approach is imple-

mented, but rescheduling activity can be invoked

between rescheduling points if a disruption that is

deemed sufficiently serious is observed. This latter
approach is also commonly observed in practice,

where schedules are often developed for some base

horizon, such as a day or a shift, but are modified

as needed during that period.

A number of authors have adopted the periodic

and event-driven view of rescheduling and analyzed

different approaches in this area. Church andUzsoy

(1992) consider the problem of minimizing maxi-
mum lateness on single-stage production systems

involving single and parallel machines, where the

only source of uncertainty is random job arrivals.

They develop worst-case error bounds for the pe-

riodic approach assuming that an optimal algo-

rithm is used to schedule the jobs available at each

scheduling point. They then explore the perfor-

mance of a combined periodic and event-driven
approach, where additional rescheduling beyond

what takes place at the rescheduling points can be

caused by the arrival of a job with a tight due date.

The basic insight obtained are summarized in Fig. 1,

which plots the solution quality as a function of the

number of rescheduling actions initiated. The un-

derlying period of the periodic rescheduling policies
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are also indicated. These results indicate that sche-

dule quality initially improves quite rapidly with

more frequent rescheduling, but after a certain

point yields almost no further gains. This is intui-

tive, since once the frequency of rescheduling
activity exceeds the frequency of disruptions to the

system the rescheduling activity is merely causing

nervousness without improving the schedule qual-

ity. Another way of putting this is that a periodic

response may well be sufficient to deal with the

disruptions faced by the system, and that resched-

uling with every system state change may be coun-

terproductive, at least from the stability point of
view. In this figure it is possible to interpret the

number of rescheduling activities as a surrogate for

the disruption to the shop floor caused by the

changes of schedule. These results have been sup-

ported by a number of subsequent researchers for a

variety of shop environments, e.g. Sabuncuoglu and

Bayiz (2000) for the classical job shop environment

under mean tardiness and makespan performance
measures; Muhlemann et al. (1982) for job shops

with multiple identical machines at each station;

Sabuncuoglu and Karabuk (1998) for flexible

manufacturing system with uncertain job process-

ing times and machine breakdowns; Perry and

Uzsoy (1993) for semiconductor testing operations

with machine failures; Shafaei and Brunn (1999a,b)

for open shops. Fang and Xi (1997) apply this type
of approach to minimizing makespan in a flexible

manufacturing system with essentially similar re-

sults.
A variety of authors have developed rolling
horizon procedures, which are basically periodic

rescheduling policies under the above taxonomy.

These have been developed using a variety of

techniques for solving the scheduling problems at

each rescheduling point. Singer (2001) uses a

heuristic decomposition procedure based on the

shifting bottleneck procedure developed by Pinedo

and Singer (1999). Qi et al. (2000) propose a sim-
ilar framework using a multipopulation genetic

algorithm. It is interesting to note that this type of

approach can be used in completely deterministic

systems as well as in those where the future state is

uncertain.
4.3.2. Predictive–reactive scheduling versus com-

pletely reactive approaches

A number of authors have examined the ques-

tion of when a periodic or event-driven resched-

uling policy based on a global view of the

scheduling problem can perform better than a

completely reactive dispatching approach. Ya-

mamoto and Nof (1985) compare the effects of a

fixed optimization-based schedule, an event-driven

rescheduling approach and dispatching rules in a
FMS environment. They find that in the systems

under study, a fixed optimization-based schedule

obtained by a branch and bound algorithm out

performs myopic dispatching rules in the face of

machine failures, and is in turn outperformed by

the event-driven rescheduling approach. Hutchi-

son and Khumawala (1990) examine this question

in a flexible manufacturing system environment
where the only uncertainty is due to job arrivals at

the start of planning periods. They find that a

periodic rescheduling policy based on an optimi-

zation formulation developed by Hutchison et al.

(1991) outperforms dispatching, especially when

there is routing flexibility. Wan (1995) shows that

when processing times are random, a global

scheduling algorithm may yield poorer solutions
than a dispatching policy. He also illustrates the

dangers of using the mean processing time in a

situation where processing times are random

variables with relatively high coefficient of varia-

tion (e.g., exponentially distributed where the

coefficient of variation is equal to one).
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An important paper in this area is that of
Lawrence and Sewell (1997), who compare the

performance of a global scheduling heuristic based

on the shifting bottleneck algorithm of Adams

et al. (1988) with myopic, completely reactive dis-

patching rules in the presence of uncertain job

processing times. They demonstrate that as pro-

cessing time uncertainty increases, the difference in

performance between the global method and the
dispatching rules becomes less significant. They

conclude that in systems with high uncertainty,

completely reactive algorithms can be used with

relative confidence, and question the benefits of

global scheduling procedures in general.

In contrast, Barua et al. (2001) propose another

approach in which a global schedule for the fac-

tory is developed using a periodic rescheduling
policy. This schedule is not implemented directly,

but rather serves to provide a priority index for the

jobs as execution unfolds. The jobs are dispatched

at the machines based on their start times in the

global schedule. Extensive simulation experiments

show that under a variety of operating conditions,

including processing time uncertainty and machine

failures, this approach significantly outperforms
myopic dispatching rules. However, as the level of

uncertainty becomes high relative to the frequency

of rescheduling, performance becomes deteriorates

to a level comparable to that of myopic dispatch-

ing rules.

Honkomp et al. (1999) describe a simulator for

semi-continuous and batch processing manufac-

turing environments that can accept deterministic
schedules and simulate both a deterministic and a

stochastic realization of the schedule. The sto-

chastic version can also use rescheduling logic.

Running two versions of the simulation the authors

compare the performance and robustness of the

schedules. Two metrics are used for comparison.

PB ¼ OF=OFDB is a measure of how well the

average objective function value of the stochastic
simulation compared to the objective function of

the best deterministic schedule.

DB ¼ SD=jOFDBj is the standard deviation of

the replicas of stochastic version compared to best

deterministic objective function. This is used as a

measure of robustness. In simulations without re-

scheduling schedules with the best performance
also had the best robustness which is somewhat
counter intuitive. In cases with rescheduling, re-

scheduling strategy with no penalties (i.e., can re-

schedule anything in the future) or no rescheduling

created the best performance. Again those that

had the best performance had the best robustness.

Matsuura et al. (1993) provide an extensive

study of a slightly different rescheduling policy. In

their approach, called switching, a predictive
schedule is developed on a periodic basis. How-

ever, if the realized schedule is deemed to have

deviated sufficiently from the predictive one, the

system switches to using a dispatching rule for the

remainder of the period. This approach is con-

trasted with using the predictive schedule

throughout the period (by right-shifting jobs when

delays occur) and dispatching approaches. They
focus on three different types of disruptions: rush

order arrival, specification changes (which cause

new operations to be added to a job, or existing

operations to be deleted), and machine failures.

Their results are quite insightful: they show that

when the frequency of disruptions is low, the

predictive/reactive approaches outperform the

dispatching. Once the level of disruption reaches a
certain level, however, the dispatching begins to

perform better than the predictive/reactive ap-

proaches.

We believe that the answer to this debate lies in

the results of Matsuura et al. (1993) and Lawrence

and Sewell (1997), and is hinted at in the results of

several other papers. In an environment with little

uncertainty, predictive/reactive methods based on
global information and optimization techniques

are highly likely to yield better schedules than

completely reactive dispatching procedures. How-

ever, once the variability in the system exceeds a

certain level, which appears to be system-depen-

dent, the global information on which the predic-

tive/reactive approaches are based becomes

invalid, causing them to generate poor schedules
due to solving the wrong problem: the problem

data they use does not correspond to the problem

encountered on the shop floor.

Having agreed with Lawrence and Sewell (1997)

thus far, however, we do not believe that this in-

sight should push us to disregard work on predic-

tive/reactive scheduling methods. First of all, when
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a manufacturing system is subject to high levels of
uncertainty we would suggest that management�s
time and resources would be better spent on

understanding the sources of this variability and

working to reduce it, rather than developing

sophisticated scheduling logic. In addition, there

are many manufacturing systems in which the dif-

ference in performance that can be obtained from a

sophisticated scheduling procedure over a dis-
patching rule is simply not worth the amount of

trouble that would be required to implement the

global system. On the other hand, in capital-

intensive environments such as semiconductor

manufacturing, which require hundreds of unit

processes and complex machinery and product

routings, improvements of even a few percentage

points in performance measures such as the aver-
age lead time may be worth millions of dollars.

It is interesting to note that a number of

researchers have attempted to use global schedules

as a complement to dispatching rather than to

replace them. We have already mentioned the

work of Barua et al. (2001), in which a global

schedule generated on a periodic basis is used as a

priority index in a dispatching rule, that outper-
forms myopic rules that do not use global infor-

mation under a wide range of operating

conditions. Similarly, Roundy et al. (1991) pro-

pose a price directed approach to the scheduling

problem comprised of a global scheduler and a

real-time dispatching module. The performance

measure that they use is the weighted tardiness.

They derive costs that are associated with per-
forming a job at a particular time from the global

scheduler that is passed on to the dispatching

module. When a machine becomes free, the local

dispatcher runs a fast algorithm to determine the

job to be processed next based on the costs given

by the global scheduler. With increasing shop

complexity, their method performed well com-

pared to dispatching rules.
Taking a rather different approach, Wu et al.

(1999) propose a decomposition approach for

scheduling in a job shop environment in which an

optimization model using global information on

the shop is used to develop a partial ordering of

jobs in a manner that reflects their relative priori-

ties based on global considerations, but also leaves
room for dynamic decisions to be made as the state
of the factory evolves. This approach is somewhat

related to that of Baptiste and Favrel (1993), in

that it essentially provides the execution agent with

a partial schedule that can yield a number of dif-

ferent schedules. The authors show that their ap-

proach performs well in terms of robustness, where

robustness is defined as the amount of degradation

in performance as processing time variation in-
creases. A similar approach which uses an activity

on node representation similar to the disjunctive

graph representation mentioned below, and again

aims at specifying a set of schedules from which

the user or a real-time scheduling system can select

an appropriate decision in real time is proposed by

Billaut and Roubellat (1996), who discuss a com-

mercial implementation of a system based on this
approach but do not provide detailed computa-

tional experiments.

In these three groupings of research results, the

scope of uncertainty is very limited and the tax-

onomy introduced in Section 2 can be applied. The

uncertainty is considered random, context-free,

and the assumption of independence is pervasive.

The cause of uncertainty is often machine avail-
ability (breakdown and repair) or some stochastic

aspect of processing time that makes the start and

finish times variable. Uncertainty is included nei-

ther in the initial schedule generation nor in the

reactive regeneration.

4.3.3. Problem representations

An obvious issue in predictive–reactive sched-
uling is that of assessing the impact of a given

disruption on an existing schedule. This is impor-

tant for two different reasons. On the one hand, we

need to assess the impact of a disruption to

determine whether a rescheduling action is neces-

sary. Once a rescheduling action has been decided

upon, we may need an estimate of the impact of

the disruption to select and execute an appropriate
rescheduling action.

A number of authors study how to estimate the

impact of a disruption at a particular point in the

execution of a predefined schedule (e.g., Abumai-

zar and Svestka, 1997; Wu et al., 1999; Mehta and

Uzsoy, 1998; Wu and Li, 1995). It is interesting to

note that many of these papers use algorithms that
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can be inferred from the well-known disjunctive
graph representation of the job shop scheduling

problem, although not all of them appear to be

aware of this. In this representation a general

multimachine scheduling problem can be elegantly

represented using a disjunctive graph GðN ;A;EÞ
(Roy and Sussmann, 1964). Each node in the node

set N corresponds to an operation to be processed

on some machine, with the addition of sink, source
and job completion nodes. The source node 0 has

conjunctive (directed) arcs of length zero emanat-

ing from it to the first operation of each job. Each

completion node j� for job j has a conjunctive arc
incident into it from the last operation of job j and
a conjunctive arc incident from it to the sink node

F . The remaining conjunctive arcs in the set A
represent precedence relations between the opera-
tions of the individual jobs. Each pair of disjunc-

tive arcs in the set E captures the relationship

between operations to be processed on the same

machine, and consists of a pair of arcs with

opposite orientations, at most one of which can

appear in any path in the graph. The set E forms m
cliques (complete sub-graphs) of disjunctive pairs,

one clique for each of the m machines. All opera-
tions belonging to a clique have to be processed on

the same machine and thus cannot overlap in time.

Hence a scheduling decision corresponds to fixing

the disjunctive pair of arcs in one of the two pos-

sible orientations, i.e., deciding which of the two

operations represented by the nodes will be

scheduled before the other. All arcs incident from

a node representing an operation have length
equal to the processing time of that operation. A

number of authors have discussed at length how to

adapt this representation to a range of different

shop conditions and performance measures (Ova-

cik and Uzsoy, 1997). However, once this graph

has been constructed, the effect on operation start

and end times can be calculated directly using

longest path calculations in this graph, by updat-
ing the duration of the operation during whose

processing the disruption occurs. Several of the

algorithms mentioned above, notably those of

Abumaizar and Svestka (1997) and Li et al. (1993)

essentially develop these ideas independently.

It is interesting to observe that there are no

representations of which we are aware that
explicitly model the uncertainty in the representa-
tion, or perform any but the simplest calculations

based on uncertainty. One would think that sto-

chastic project scheduling methods such as the

project evaluation and review technique (PERT),

which have been well-studied for decades, would

have interesting insights for scheduling researchers

in this area. However, this literature does not seem

to have had much effect on the research reviewed
in this paper, probably because the underlying

mathematics is much closer to pure stochastic

scheduling that deterministic scheduling, and

hence many researchers familiar with deterministic

scheduling approaches are not comfortable with

these approaches.

4.3.4. Formulations of the rescheduling problem

Given that rescheduling will be carried out,

researchers have examined different formulations

of the scheduling problem encountered at a specific

rescheduling point. Many of these approaches

consider both a primary measure of schedule per-

formance that must be maintained, as well as some

measure of the disruption caused by rescheduling

the shop. This approach automatically leads to the
formulation of the rescheduling problem as a

multiobjective scheduling problem, where the issue

is to develop schedules that are satisfactory with

respect to both sets of criteria.

Naturally, the approaches to this issue have

followed the standard approaches to multiobjec-

tive problems: hierarchical approaches, in which

one performance measure is selected as more
important than the other; weighted sums of the

different objectives, and generation of all sets of

efficient (Pareto-optimal) schedules. Unal et al.

(1997) consider a static rescheduling problem in

which a number of new jobs must be inserted into

an existing schedule so as to minimize the total

completion time of the new jobs without causing

existing jobs to miss their deadlines. Hence the due
date performance of existing jobs is considered a

priority, and is imposed as a constraint on the

secondary criterion of the total completion time of

the new jobs. Alagoz and Azizoglu (2003) consider

the problem of rescheduling a parallel machine

workcenter subject to disruptions and provide

heuristic algorithms to minimize the number of
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rescheduled jobs subject to optimizing the total
completion time of all jobs in the system.

In the matchup scheduling approach

(Bean et al., 1991; Akturk and Gorgulu, 1999), the

objective is for the realized schedule to return to

the predictive schedule within a certain time of the

disruption occurring. This approach will clearly

yield high-quality schedules if there is sufficient

idle time in the original predictive schedules.
Leon et al. (1994) show that the rescheduling

problem can be formulated as a stochastic control

problem using decision trees. The authors formu-

late the problem as an N -step game where the

objective is a convex combination of makespan

and deviation from the original (or previous)

predictive schedule. At each decision node (Xk) the

controller can take one of Na corrective actions in
anticipation of a particular disruption (proactive)

or because of a particular disruption (reactive). It

is however important to note that the actions do

not correspond to different heuristics but applica-

tion of the same heuristic to different type of

expectations or disruptions. The heuristic solves a

one-machine scheduling problem (P1) in which the
expected disruption is inserted as a job with known
arrival time and duration. Once the new schedule

is generated (node Sk) the system receives a dis-

ruption or a monitoring event that takes it to the

next decision node (Xkþ1). The authors describe

methods to manage the size of the decision tree by

sampling disruptions and available actions. The

objective function value of a state Vk can be for-

mulated as a recursive function of the future
decisions and disruptions where VN is the value to

be minimized (solutions of P1 and VN are given in

two other papers by the authors) and the solution

specifies a policy (a path from root to node). It is

important to note that the decision tree con-

structed this way is a subset of that corresponding

to the real phenomenon, so the solution to VN is

sub-optimal.
The formulation allows for modelling machine

breakdowns, scheduled outages such as mainte-

nance. It is also possible to incorporate monitoring

epochs at scheduled time intervals. The controller

is tested using simulation on various settings

against total reschedule and right-shift policies

(note that the controller has to compute an N -step
policy based on what the simulation has just pre-
sented at step 1 (i.e., first disruption or first mon-

itoring event)). As expected the quality of solution

depends on N and monitoring frequency. In dif-

ferent machine reliability scenarios the controller

outperforms other policies (note that by default

the policy can include a right-shift action at a given

node). The authors also demonstrate that the

method is robust to the existence of estimation
errors (i.e., disruption distributions) but it is sen-

sitive to the initial off-line schedule (robust

scheduling solutions seems to yield better results).

A considerable number of researchers have

viewed the rescheduling problem as that of classi-

fying the disruptions as they occur and selecting an

appropriate rescheduling action from among a

suite of options. Jain and Elmaraghy (1997) and
Dutta (1990) suggest a number of essentially rule-

based heuristic procedures that are invoked in the

face of different events such as machine failure and

the arrival of rush orders. One tool for this has

been case-based reasoning (Koton, 1989). Dorn

(1995) describes a case-based scheduler that cre-

ates a schedule using tabu-search (as a constraint

satisfaction search algorithm) and that suggests
repair strategies using its case base. Like all case-

based systems it stores relevant system states and

the solution used in this state. It can repair its case-

base if existing cases either fail to match a system

state or produce bad results. O�Kane (2000) de-

scribes a knowledge-based system for scheduling in

FMSs that learns from simulation traces. The

system logs the disruption states and the decisions
made through out a simulation run. At the end of

each simulation run the outcome is assessed and

the knowledge base is updated if necessary. The

system state is monitored by attributes like

‘‘number of interruptions encountered until now’’,

‘‘percentage of schedule completed’’, ‘‘source of

interruption’’, etc. and some of the actions sug-

gested are ‘‘abort schedule’’, ‘‘re-route pallets’’,
‘‘flag for more preventive maintenance’’, etc.

However, no experimental results or details of the

learning algorithm are reported.

Miyashita and Sycara (1995) describe a case-

based system that is able to create an ‘‘optimized’’

schedule that is in line with the scheduler�s pref-
erential knowledge (or objective function). The
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system starts with an initial schedule and compares
the performance to that of the scheduler�s. If the
current performance is unacceptable the system

‘‘repairs’’ the schedule until it meets the required

criteria. During the repair process the system

randomly identifies an activity to be repaired and a

case matching the current state is invoked. The

action suggested by the case is taken and the result

is evaluated. If the result is a success the system
chooses the next activity to repair, otherwise an-

other case that match the current state is invoked.

The system has the ability to store both the failures

and successes for a case. Due to its ‘‘repair’’ centric

vision the system can be used both for predictive

and reactive scheduling. In case of a disruption the

system first resolves any infeasibility with a right-

shift and then starts the repair cycle to meet the
user�s preferences. Experiments on reactive sched-

uling show that CABINS outperforms a constraint

based search method (complete rescheduling).

Miyashita (2000) discusses how reinforcement

learning can be incorporated for case acquisition

(search control knowledge) in a case-based sched-

uler. The need for human interaction during

training is eliminated since the system is able to
replace the concept of acceptable and unacceptable

with actual rewards (objective function values).

Through trial and error the system can determine

what actions yield acceptable results (high reward)

and which do not. However, comparisons with

CABINS (Miyashita and Sycara, 1995) reveal that

the cases acquired this way are inferior.

Szelke and Markus (1995) describe a case-based
system as in Dorn (1995). The knowledge of a

scheduler is abstracted at four levels (1) state

recognition, (2) policy selection, (3) policy imple-

mentation and (4) policy execution. The black-

board control architecture enables the system to

carry out different tasks at different levels of

abstraction in parallel following the goal/plan/

task/action structure. The controlling unit of the
blackboard ensures that conflicting plans are re-

solved and system feasibility is maintained for a

time window. The necessary knowledge to create

and repair schedules is saved as cases and rules

that are instantiated by the control unit for the

appropriate task at hand. Another basic approach

to scheduling in the face of uncertainty in the
artificial intelligence community (e.g., Monostori
et al., 1998; Smith, 1993; Szelke and Kerr, 1994) on

scheduling in the face of disruptions. One basic

approach has been to formulate the scheduling

problem as a constraint satisfaction problem, in

which the objective is to find a feasible solution.

They then use a variety of heuristic search tech-

niques to ‘‘repair’’ schedules, i.e., to reschedule

jobs to restore feasibility once infeasibilities have
been detected. Once infeasibility has been accom-

plished, they may also attempt to seek for sched-

ules with good performance. Examples are Sadeh

et al. (1993) and Zweben et al. (1993, 1994), who

accomplish this by using simulated annealing,

while Smith and his co-workers use constraint-

guided heuristic search (Hasle and Smith, 1994;

Henseler, 1995; Smith et al., 1990a,b; Smith, 1994).
The rescheduling research is also limited in the

causal and impact dimensions. With the exception

of O�Donovan et al. (1999) and McKay et al.

(2000), the rescheduling work is also context-free.

In summary, the majority of recent research

efforts typified by the three groupings address a

very small number of uncertainty causes, and

implicitly assume context-free situations and
independence. The research also restricts the im-

pact to time. The rescheduling research attempts

to include uncertainty concepts directly (e.g., per-

formance objectives) but there is little work on

predictive generation of schedules that anticipate

uncertainty and the impacts.

4.3.5. Implementation and bridging issues

Another body of work has addressed the issues

of how to implement systems in which reschedul-

ing activities must take place and how to bridge

theory and practice. At the theoretical level

McKay and Wiers (1999) argue that uncertainty

and its intricacies must be addressed before theory

can be readily used in practice. For what can be

described as severely restricted situations, several
authors have proposed system architectures,

describing how automated shop floor control and

factory planning systems can be implemented. A

common thread running through this focused

work is the idea of separating the scheduling

function into a planner and a dispatcher, where the

planner develops a predictive schedule, and the
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dispatcher executes it to the best extent possible
given the current situation on the shop floor. Most

of these architectures also require a monitoring

capability that will determine when the realized

schedule on the shop floor has deviated sufficiently

from the predictive schedule that a rescheduling

action of some kind is required. Bauer et al. (1991),

Grant and Nof (1989), Roundy et al. (1991), Smith

et al. (1990a,b) all propose variations of this ap-
proach. Henning and Cerda (2000) discuss these

issues in the context of process industries. Chang

and Luh (1997) propose an approach for inte-

grating cell-level controllers with global scheduling

algorithms. In their approach a global schedule is

generated for a longer time horizon, and resched-

uling may take place for shorter time horizons.

Finally, a dispatching module executes the current
schedule. Du and Chiou (2000) present an ap-

proach based on version management in an object

oriented database to implement an event-based

rescheduling scheme.

4.3.6. Summary

These five categories of scheduling research

concentrate on sequence generation or regenera-
tion driven by localized objectives. This is only

part of the problem when considering schedule

execution under uncertainty. The research does

not consider the many interrelationships that exist

in real situations between jobs, between machines,

and between processes. These interrelationships

become important when uncertainty exists and

critical events occur. For example, a machine goes
down and affects a specific job. This job�s
remaining operations are scheduled in the future

and this can affect other jobs and their operations

competing for the resource. What does one do

with the crashed job and its remaining pieces?

How can other jobs be dynamically re-routed to

choose alternative processes or resources? In a

non-automated factory situation, the humans
perform the problem-solving and do a variety of

things to create new capability, juggle require-

ments, and keep the manufacturing system flow-

ing. The batch sizes may be changed, equipment

re-wired, old processes dusted off, people cajoled

to perform different tasks, and so forth. The

schedule is executed––there is product being made.
The human provides the knowledge and skill to
reconfigure the problem and create the necessary

solutions. How does this work in an automated

factory? In a system with real-time control, ma-

chines and processes may still fail and create

uncertainty. Within black-box manufacturing, the

automatic schedule generation and regeneration

can ignore the impacts of uncertainty or incorpo-

rate the ability to deal with it. The following sec-
tion discusses uncertainty in automated settings

and reviews current research.
5. Execution under uncertainty in automated set-

tings

In theory, a highly automated system is devoid
of the context-sensitive attributes discussed in

Section 3 and is suitable for consideration for

mathematical approaches to scheduling (e.g.,

Wiers, 1997). Furthermore, an automated system

is usually cushioned and protected from many of

the sources of uncertainty that face general man-

ufacturing. There is also reduced uncertainty in the

process since the system is automated and has to
be specified in detail. These characteristics reduce

the overall challenge associated with uncertainty.

This is not to say that uncertainty is absent or

minimized. The yield may be uncertain, creating

uncertainty in batch sizes and affecting start and

finish times. Machines and material handling

equipment can fail. Prototype work put through

the system can destabilize existing processes,
requiring the system to be retuned. Prototype

work has also been known to damage equipment.

Material used in the process is also subject to

variability. Hence, there can be enormous quanti-

ties of uncertainty in an automated system––

depending on the system.

An automated system that does not deal pro-

actively with uncertainty stalls or can enter chaotic
behavior. Jobs can block other jobs, resources can

be in conflict, causing the whole system to shut

down. A progressive system would be able to

handle many of the common forms of uncertainty

and react appropriately. Not all forms of uncer-

tainty can be predicted or corrected for, but it is

reasonable to expect that situations like having
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one machine out of a group of similar machines
fail would not bring the system to a halt. That is,

the system must have its operational feasibility

maintained––without the help of human problem-

solving and intervention. Specifically, whatever

control mechanism is used, it must allocate re-

sources so that if some critical resource fails, the

failure does not propagate through and cause

major system disruption. Indeed, the system
should continue to operate smoothly and auton-

omously while the failed resource is being repaired

or replaced. This requires allocating resources so

that jobs requiring a failed resource do not block

others that do not require the failed resource. It

also requires making full use of potential process

redundancies and flexible routing capabilities.

These issues are important for highly automated
facilities which large capitalization investments.

For example, robust operation is particularly

important in the semiconductor industry, where

the estimated annual cost of unplanned downtime

is currently in the range of $1 billion (Wohlwend

et al., 1996).

An area of automated manufacturing research

that focuses on operational feasibility and
robustness is structural control. Structural control

has several objectives, one key criteria relevant to

the discussion on uncertainty is its goal to prevent

any allocation of system resources that adversely

affects its ability to continue production. Because

the control mechanisms operate in real-time, there

are numerical complexity issues relating to con-

figurability analysis and resource conflict resolu-
tion (e.g., Lawley et al., 1997; Lawley and

Reveliotis, 2001). There are complementary con-

cepts to structural control that impact an auto-

mated system�s ability to handle uncertainty. For

example, the ability to handle the majority of

possible disruptions might require that all tools

have multiple copies or that all routes be acyclic.

These types of special manufacturing structures
can have important implications for system design

and have been applied to allocating machine

capacity and tooling in automated manufacturing

systems (Lawley and Reveliotis, 2001; Gebraeel

and Lawley, 2001).

It is clear that the objective of structural control

may conflict with that of the scheduling logic and
the predictive schedule. Indeed, unless scheduling
techniques account for the resource allocation lo-

gic in the structural controller, the predictive

schedule is almost certain to be infeasible with

respect to the structural controller. These conflicts

must be resolved in favor of the structural con-

troller, since to do otherwise is to invite a cata-

strophic system failure that devastates system

performance. Integrating structural control logic
into the predictive scheduling process is not feasi-

ble due to the combinatorial explosion that would

result. Thus, a major research direction is to inte-

grate predictive–reactive scheduling with struc-

tural control in automated systems. This will be

particularly important in the coming 300 mm

wafer generation in the semiconductor industry,

where the use of manufacturing automation is
expected to rise to over 95% (Wohlwend et al.,

1996).

It is interesting to note that with the exception

of McKay et al. (1995), the scheduling literature

considered in the previous section essentially ig-

nores the need for structural control of any kind.

The style of structural control found in McKay

et al. was human centered and did not address
the specific challenges found in highly automated

plants when the control has to be done by soft-

ware and precise calculations. The structural

control problems faced by automated systems

have been ignored completely (i.e., the numerical

complexity, dynamic restructuring of the prob-

lem, and extreme constraint relaxation). Note

that the structural control policy in use may
actually become an additional source of uncer-

tainties for the scheduling system, since the

structural control policy in force may override

scheduling decisions that may jeopardize suc-

cessful system operation. However, the perspec-

tive of not allowing the system to enter

‘‘undesirable’’ states is useful for considering the

problem of executing a schedule.
6. Discussion and future directions

In this section we will briefly summarize our

conclusions from the discussion above, and sug-

gest a number of broad areas for future research.
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6.1. Problem formulation

The vast majority of the scheduling research we

are aware of does not explicitly consider execution

issues such as uncertainty, but implicitly assumes

that the global schedule will be executed exactly as

it emerges from the algorithm generating it. The

theory does not address different causes, the con-
text in which uncertainty arises, or the various

impacts that might result (McKay and Wiers,

2001). Conceptually, extending the scheduling

model to include all essential constraints will per-

mit direct execution of the global schedule. How-

ever, the inclusion of additional constraints into

global scheduling models significantly increases

the complexity, and therefore, the computational
burden, of both the schedule generation and re-

scheduling tasks, which are in general NP-hard to

begin with.

In terms of formulations, the vast majority of

the current literature falls into the category of

predictive–reactive scheduling, where a predictive

schedule is released to the shop floor and then

progressively modified to allow it to function
effectively as disruptions occur. In effect, each time

a disruption occurs and is accommodated a new

predictive schedule emerges that remains in force

until the next disruption. A central theme of this

research is that of schedule repair––the need to

have a schedule in existence that is feasible at all

times. Clearly, this requires the constant moni-

toring of the status of the shop floor against the
predictive schedule, and possibly the interruption

of processing on the shop floor while the new

schedules are generated. The research is focused

upon the machine failure as the cause and time as

the only impact.

It is noteworthy that in this area many different

researchers appear to have trodden essentially the

same ground with essentially the same results. The
two main conclusions seem to be (i) that resched-

uling more frequently does not make things worse,

but does not make things better either beyond a

certain frequency, and (ii) if the level of uncer-

tainty is low enough, an optimization-based pre-

dictive scheduling algorithm can outperform an

on-line, dispatching algorithm but the converse is

true once uncertainty exceeds a certain threshold.
We would suggest that efforts to quantify these
thresholds and relate them to system parameters

would be a useful direction for future work, since

at present we have little understanding of how the

behavior of these thresholds changes with the

different kinds of uncertainty present in the sys-

tem. In addition, it is difficult to extract general

insights from the current literature beyond the two

broad conclusions stated above––much of the
work is simulation based, and hence must be

interpreted in the context of the specific system

configurations studied––most papers examine only

one basic system structure. Studies that simply

reiterate the two broad conclusions reached above

for different system topologies are of limited value.

Another point to be made in passing is a

methodological one. Many papers present what
are essentially heuristic algorithms for an optimi-

zation formulation of the rescheduling problem,

but often give only an illustrative example to show

how the procedure works. In order to gain an in-

depth understanding of the performance of any

heuristic under different conditions it is essential to

conduct well-designed computational experiments

and analyze their results in an appropriate man-
ner. Rardin and Uzsoy (2001) discuss some of

these methodological issues in depth.

It may well be worthwhile to consider the pre-

dictive schedule in a somewhat different role––that

of providing a guideline, or information, on the

relative priority of jobs based on overall factory

status––as relating to the various purposes of

scheduling outlined in Section 1. Viewed in this
manner, the global schedule does not even need to

be feasible at all times––it just needs to capture a

global picture of resource contention and give

relative priorities to jobs. The actual issue of which

job goes next on which machine can be handled by

a dispatching-like system which considers the po-

sition of the job in the global schedule in addition

to current shop-floor status. Hence, the global
scheduler can be viewed as complementing and

extending, not replacing, existing real-time dis-

patch systems. This is consistent with the hierar-

chical approach to production control adopted by

many researchers over the last several decades, and

also corresponds closely to industrial practice in a

wide range of industries.
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The formulation can also be extended to ad-
dress areas of uncertainty identified by the taxon-

omy introduced in Section 2. It is clear that the

existing research is extremely narrow and that our

current research and models do not capture the

variety of uncertainty encountered in real situa-

tions. We need to consider the inclusion of context

and impact if we are to be able to model what is

going to happen and to derive suitable solutions to
the problem.
6.2. Estimation of reconfiguration costs

Much of the literature has focused exclusively

on schedule performance, and has ignored the

costs of reconfiguration, although an increasing

body of work is now beginning to include these in
a variety of forms. However, there is clearly no

broad agreement on what the best way of model-

ling such costs is. We conjecture that these costs

are likely to be system-dependent, and should

probably take into account at least some of the

repercussions at other nodes of the supply chain

that will be forced to reconfigure to some degree

by changes in the production schedule at the cur-
rent shop. A systematic approach to the estima-

tion of different costs of reconfiguration would

be of considerable theoretical and practical

interest.

Another issue to consider here is that of how to

evaluate the performance of systems in the face of

disruptions. The standard practice is to use long-

run steady state performance measures in sim-
ulation studies, but this may well miss crucial

dynamic aspects of system behavior. For example,

Uzsoy et al. (1993) considered the performance of

different dispatching rules in a shop with process-

ing time uncertainty and time-varying job arrival

rates. Since they used long-run steady state sta-

tistics to compare the algorithms, much of this

variation had little apparent effect on system per-
formance. However, shop-floor personnel do not

manage in long-run, but over short time periods

such as shifts or weeks. Much of their behavior is

determined by the considerations of the effects of

their actions over this time frame, which is not

captured by long-run statistics.
6.3. Using available information on the nature of

disruptions

Another interesting aspect of much of the pre-

dictive–reactive scheduling research is its implicit

assumption that we know absolutely nothing about

disruptions that will allow us to take some action

while building the predictive schedule to mitigate
their effects. In practice, there is often statistical

information on at least some kinds of disruptions,

such as machine failures, which can be employed to

develop predictive schedules capable of surviving

disruptions. In some industries, such as semicon-

ductor manufacturing, it is often possible to assess

the state of a machine�s health and assign work

accordingly, due to the various monitoring capa-
bilities available. Mehta and Uzsoy (1998) give one

example of how this information can be used, as

does the robust scheduling approach of Daniels

and Kouvelis (1995). However, this area is clearly

worthy of more study. Similarly, different jobs and

machines often respond in different ways to dis-

ruptions, and an experienced human scheduler will

often exploit such knowledge in developing and
reconfiguring production schedules. O�Donovan
et al. (1999) illustrate one way of incorporating this

type of information into scheduling heuristics. The

latter paper combines the two ideas of using sta-

tistical information on disruptions in developing

the predictive schedule and in rescheduling after

the disruption has occurred. McKay et al. (2000)

and Black (2001) also discuss how additional
information can be used and illustrate how to

create hybrid scheduling heuristics to incorporate

such knowledge. The results of this small body of

work are very promising, indicating that significant

reductions in reconfiguration-related costs can be

obtained with very minor sacrifices from the con-

ventional scheduling performance measures.

6.4. Integration with structural control

A surprising gap in the literature is the almost

total lack of connection between the extensive lit-

erature on structural control of automated manu-

facturing systems and scheduling with disruptions.

The two bodies of work differ quite fundamentally

in their approach to the problem. The scheduling
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literature tends to view the problem as that of
updating a plan in the face of unexpected changes

in the execution environment. The emphasis in

this literature is on optimizing shop performance,

exactly or approximately, over a period of time,

where the schedule performance is generally de-

fined in terms of the movement of jobs through the

entire shop––due date performance or flow times,

for instance. In contrast, structural control focuses
on a very short time frame, with the goal of pre-

venting the system from entering a state that may

lead to catastrophic failure. There is no consider-

ation of managerial priorities such as due dates.

However, it is clear that the two functions

interact substantially. An improved perspective

integrating these two viewpoints would be very

useful in practice.
7. Conclusion

We started with a broader definition of what

scheduling is and why scheduling is performed

which allowed a fuller discussion on uncertainty. A

four-dimensional taxonomy for uncertainty was
introduced that was then used to frame a number

of research areas. The literature review and dis-

cussion clearly indicates that while some limited

work and progress has been made in the area,

much remains to be done. For too long the re-

search community has failed to either understand

or appreciate what scheduling is in a real situation

and what the key dimensions are––uncertainty is
one such dimension.
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