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Abstract

This paper reviews results related to deterministic scheduling problems where machines are not continuously

available for processing. There might be incomplete information about the points of time machines change availability.

The complexity of single and multi machine problems is analyzed considering criteria on completion times and due

dates. The review mainly covers intractability results, polynomial optimization and approximation algorithms. In some

places too results from enumerative algorithms and heuristics are surveyed. Ó 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

In the scheduling theory the basic model as-
sumes that all machines are continuously available
for processing throughout the planning horizon.
This assumption might be justi®ed in some cases
but it does not apply if certain maintenance re-
quirements, breakdowns or other constraints that
cause the machines not to be available for pro-
cessing have to be considered.

Examples of such constraints can be found in
many areas. Limited availabilities of machines
may result from preschedules which exist mainly
because most of the real world resource planning
problems are dynamic. This means that the input
data are being frequently updated. A natural ap-
proach to cope with a dynamic environment is to
trigger a new planning horizon when the changes
in the data justify it. However, due to many ne-
cessities, as process preparation for instance, it is
mandatory to take results of earlier plans as ®xed
which obviously limits availability of resources for
any subsequent plan. Consider e.g., MRP-II pro-
duction planning systems when a rolling horizon
approach is used for customer order assignment
on a tactical level. Here consecutive time periods
overlap where planning decisions taken in earlier
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periods constrain those for later periods. Because
of this arrangement, orders related to earlier
periods are also assigned to time intervals of later
periods causing the resources not to be available
during these intervals for orders arriving after
the planning decisions have been taken. The same
kind of problem may be repeated on the opera-
tional level of production scheduling. Here pro-
cessing of some jobs is ®xed in terms of starting
and ®nishing times and machine assignment.
When new jobs are released to the shop ¯oor there
are already jobs assigned to time intervals and
machines while the new ones have to be processed
within the remaining free processing intervals.

Another application of limited machine avail-
ability comes from operating systems for mono-
and multi-processors, where subprograms with
higher priority will interfere with the current pro-
gram executed. A similar problem arises in multi-
user computer systems where the load changes
during the usage. In big massively parallel systems
it is convenient to change the partition of the
processors among di�erent types of users accord-
ing to their requirements for the machine. Fluc-
tuations related to the processing capacity could
be modeled by intervals of di�erent processor
availability. Numerous other examples exist where
the investigation of limited machine availability is
of great importance and the practical need to deal
with this type of problem has been proven by a
growing demand for commercial software pack-
ages. Since some time, the analyses of these
problems have also attracted many researchers.

In the following we will investigate scheduling
problems with limited machine availability in
greater detail. The review focuses on deterministic
models with complete and incomplete information
about the availability constraints. For stochastic
scheduling problems with limited machine avail-
ability and prior distributions of the problem pa-
rameters see Refs. [33,34]. We will survey results
for one machine, parallel machine and ¯ow shop
scheduling problems in terms of intractability and
polynomial time algorithms. In some places also
results from enumerative optimization algorithms
and heuristics are analyzed. Doing this we will
distinguish between non-preemptive and preemp-
tive scheduling.

2. Problem de®nition

A machine system with limited availability is a
set of machines (processors) which does not op-
erate continuously; each machine is ready for
processing only in certain time intervals of avail-
ability. Let T � fTjjj � 1; . . . ; ng be the set of tasks
and P � fPiji � 1; . . . ;mg be the set of machines
with machine Pi only available for processing
within Si given time intervals �Bs

i ; F s
i �, s � 1; . . . ; Si

and Bs�1
i > F s

i for all s � 1; . . . ; Siÿ1. Bs
i denotes the

start time and F s
i the ®nish time of sth interval of

availability of machine Pi. There might be com-
plete or incomplete information available con-
cerning the intervals. In some cases all Bs

i and F s
i

are known in advance; in other cases only some of
them are known. It might also happen that there is
no prior knowledge about machine availability at
all.

Each task Tj has a processing requirement of pj

time units. In set T precedence constraints among
tasks may be de®ned. Ti < Tj means that the pro-
cessing of Ti must be completed before Tj can be
started. The tasks in set T are called dependent if
the order of execution of at least two tasks in T is
restricted by this relation. Then these relations
may be modeled by a precedence graph. Other-
wise, the tasks are called independent.

Each machine may work only on one task at a
time, and each task may be performed by only one
machine at a time. Machines may be either par-
allel, i.e., performing the same functions, or ded-
icated i.e., being specialized for the execution of
certain tasks. If all processors Pi from P have
equal task processing speeds, then we call them
identical. In case of dedicated processors there are
three models of processing sets of tasks: ¯ow shop,
open shop and job shop. Later we will investigate
¯ow shops. In such a system we assume that tasks
form n subsets (chains). Each subset is called a
job. That is, job Jj is divided into m tasks, T1j,
T2j; . . . ; Tmj, and task Tij will be performed on
processor Pi. In addition, the processing of Tiÿ1j

should precede that of Tij for all i � 2; . . . ;m and
for all j � 1; 2; . . . ; n. The set of jobs will be de-
noted by J .

Each task (job) may be characterized by the
following parameters:
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· an arrival time (or ready time) rj, which is the
time at which task Tj (job Jj) is ready for process-
ing; if the arrival times are the same for all tasks
from T , then it is assumed that rj � 0 for all Tj;

· a due date dj, which speci®es a time limit by
which Tj�Jj� should be completed; usually, pen-
alty functions are de®ned in accordance with
due dates;

· a deadline ~dj, which is a `hard' real time limit by
which Tj�Jj� must be completed;

· a weight (priority) wj, which expresses the rela-
tive urgency of Tj�Jj�.
We want to ®nd a feasible schedule (a time-

based assignment of machines from set P to tasks
from set T meeting all constraints) if one exists,
such that all tasks can be processed within the
given intervals of machine availability optimizing
some performance criterion. Such measures con-
sidered here are completion time and due date
related and most of them refer to the maximum
completion time, the sum of completion times, and
the maximum lateness.

A schedule is called preemptive if each task may
be preempted at any time and restarted later at no
cost, perhaps on another machine. If preemption
of tasks is not allowed we will call the schedule
non-preemptive.

In the following we base the discussion on the
three ®elds ajbjc classi®cation scheme suggested in
Ref. [5], that uses most features of the now clas-
sical scheduling theory notation. We add some
entry denoting machine availability and we omit
entries which are not relevant for the problems
investigated here.

The ®rst ®eld a � a1a2a3 describes the machine
(processor) environment. Parameter a1 2 f;; P ;
Q; F g characterizes the machine system used:
· a1 � ;: single machine,
· a1 � P : identical machines (parallel machine

system with the same speed factor),
· a1 � Q: uniform machines (parallel machine sys-

tem with di�erent speed factors),
· a1 � F : dedicated machines (¯ow shop system).
Parameter a2 2 f;; kg denotes the number of ma-
chines (for parallel machine systems) or the num-
ber of stages (for dedicated machine systems):
· a2 � ;: the number of machines (stages) is as-

sumed to be variable,

· a2 � k: the number of machines (stages) is equal
to k (k is a positive integer).

In Refs. [41,32] di�erent patterns of availability are
discussed for the case of parallel machine systems.
These are constant, zigzag, decreasing, increasing
and staircase. Let 0 � t1 < t2 < � � � < tj < � � � < tq

be the points in time where the availability of a
certain machine changes and let m�tj� be the
number of machines being available during time
interval �tj; tj�1� with m�tj� > 0. It is assumed that
the pattern is not changed in®nitely often during
any ®nite time interval. According to these cases,
parameter a3 2 f;;NCzz; NCinc; NCdec; NCinczz;
NCdeczz;NCsc;NCwing denotes the machine avail-
ability.

(1) If all machines are continuously available
�t � 0� then the pattern is called constant
(a3 � ;).
(2) If there are only k or k ÿ 1 machines in each
interval available, then the pattern is called zig-
zag (a3 � NCzz).
(3) A pattern is called increasing (decreasing) if
for all j from IN�

m�tj�P max
16 u6 jÿ1

fm�tu�g

�m�tj�6 min
16 u6 jÿ1

fm�tu�g�;

i.e., the number of machines available in inter-
val �tjÿ1; tj� is not more (less) than this number
in interval �tj; tj�1� (a3 2 fNCinc;NCdecg).
(4) A pattern is called increasing (decreasing)
zigzag if for all j from IN�

m�tj�P max
16 u6 jÿ1

fm�tu� ÿ 1g

�m�tj�6 min
16 u6 jÿ1

fm�tu� � 1g�

�a3 2 fNCinczz; NCdeczzg�:

(5) A pattern is called staircase if for all inter-
vals the availability of machine Pi implies the
availability of machine Piÿ1 �a3 � NCsc�. A stair-
case pattern is shown in the lower part of Fig. 1;
dark areas represent intervals of non-availabili-
ty. Note that patterns (1)±(4) are special cases
of (5).
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(6) A pattern is called arbitrary if none of the
conditions (1)±(5) applies (a3 � NCwin). Such a
pattern is shown in the upper part of Fig. 1; pat-
terns de®ned in (1)±(5) are special cases of the
one in (6).
Machine systems with arbitrary patterns of

availability can always be translated to a com-
posite machine system forming a staircase pattern
[41]. A composite machine is an arti®cial machine
consisting of at most m original machines. The
transformation process works in the following
way. An arbitrary pattern is separated in as many
time intervals as there are distinct points in time
where the availability of at least one machine
changes. Now in every interval periods of non-
availability are moved from machines with smaller
index to machines with greater index. If there
are m�tj� machines available in some interval

�tj; tj � 1� then after the transformation machines
P1; . . . ; Pm�tj� will be available in �tj; tj � 1� and
Pm�tj��1; . . . ; Pm will not be available, where 0 <
m�tj� < m. Doing this for every interval we gener-
ate composite machines. Each of them consists of
at most m original machines with respect to the
planning horizon.

An example for such a transformation consid-
ering m � 4 machines is given in Fig. 1. Non-
availability is represented by the dark areas.
Composite machines which do not have intervals
of availability can be omitted from the problem
description. Then the number of composite ma-
chines in each interval is the maximum number of
machines simultaneously available. The time
complexity of the transformation is O�qm� where q
is the number of points in time, where the avail-
ability of an original machine is changing. If this

Fig. 1. Rearrangement of arbitrary patterns.
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number is polynomial in n or m machine schedul-
ing problems with arbitrary patterns of non-
availability can be transformed in polynomial time
to a staircase pattern. This transformation is useful
as, ®rst, availability at time t is given by the
number of available composite machines and,
second, some results are obtained assuming this
hypothesis.

The second ®eld b � b1; . . . ; b8 describes task
(job) and resource characteristics. We will only
refer here to parameters b1, b3, b4, and b6.

Parameter b1 2 f;; t ÿ pmtn; pmtng indicates
the possibilities of preemption:
· b1 � ;: no preemption is allowed,
· b1 � t ÿ pmtn: tasks may be preempted, but each

task must be processed by only one machine,
· b1 � pmtn: tasks may be arbitrarily preempted.

In Ref. [28] the notion of resumability and non-
resumability of tasks is introduced. Resumability
corresponds to the case where task preemption is
allowed; non-resumability de®nes the case where
preemption is not allowed. Here we assume that
not only task (b1 � t ÿ pmtn) but also arbitrary
(task and machine) preemptions are possible
(b1 � pmtn). If there is only one machine dedi-
cated to each task then task preemptions and ar-
bitrary preemptions become equivalent. For single
machine and ¯ow shop problems this di�erence
has not to be considered. Of course the rear-
rangement of an arbitrary pattern to a staircase
pattern is only used when arbitrary preemption is
allowed. In what follows, the number of preemp-
tions may be a criterion to appreciate the value of
an algorithm. When the algorithm applies to
staircase patterns, the number of preemptions for
an arbitrary pattern is increased by at most mq.

Parameter b3 2 f;; prec; tree; forest; chainsg re-
¯ects the precedence constraints and denotes, re-
spectively, independent tasks, arbitrary precedence
constraints, precedence constraints forming a tree
a set of trees or a set of chains.

Parameter b4 2 f;; rjg describes ready times:
· b4 � ;: all ready times are zero,
· b4 � rj: ready times di�er per task (job).

Parameter b6 2 f;; ~dg describes deadlines:
· b6 � ;: no deadlines are assumed (however, due

dates may be de®ned if a due date involving cri-
terion is used to evaluate schedules),

· b6 � ~d: deadlines are imposed on the perfor-
mance of a task (job) set.
The third ®eld, c, denotes an optimality crite-

rion (performance measure), i.e., c 2 fCmax;
P

Cj;P
wjCj; Lmax;

P
Uj;
P

wjUj; ;g, where Cmax refers
to minimizing the makespan �maxfCjg�,

P
Cj to

the sum of completion times,
P

wjCj to the sum of
weighted completion times, Lmax to the maximum
lateness �maxfCj ÿ djg�,

P
Uj to the sum (or

number) of tardy jobs �Cj > dj�,
P

wjUj to the
weighted sum of tardy jobs, and ; means testing
for feasibility whenever scheduling to meet dead-
lines is considered.

In order to solve these problems, di�erent kind
of algorithms will be applied. Information about
machine availabilities might be complete or in-
complete. In an on-line setting machine availabil-
ities are not known in advance. Unexpected
machine breakdowns are a typical example of
events that arise on-line. Sometimes schedulers
have partial knowledge of the availabilities, i.e.,
they have some look-ahead. They might know of
the next time interval where a machine requires
maintenance or they might know when a broken
machine will be available again. In an o�-line
setting we assume complete information, i.e., all
machine availabilities are known prior to schedule
generation. From these possibilities we can di�er
between di�erent types of algorithms.
· An algorithm is on-line if it proceeds sequential-

ly and at each time t it only needs to know the
number of processors available at t, the number
of ready tasks at t, their remaining processing
time and their deadlines or due dates.

· An algorithm is nearly on-line if it needs in ad-
dition at time t the time of the next event, that is
either a new task becomes ready for processing
or the number of available machines change
([40], extended from [20]).

· An algorithm is o�-line if all problem data have
to be known in advance. That is, at time 0 it
needs all information concerning machine avail-
abilities and task characteristics.
If the machine non-availabilities are due to un-

expected breakdowns, on-line algorithms are
needed. If the times of machine availability changes
are known a little in advance, nearly on-line algo-
rithms will su�ce. Otherwise o�-line algorithms
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will do. Note that it is often assumed in the on-line
scheduling literature (see for instance [7]) that
even processing times of tasks are not known be-
fore the processing begins. This setting is not in-
vestigated here. Most of the results which are
reviewed later relate to o�-line algorithms. In some
places we also survey on-line and nearly on-line
algorithms.

We investigate the problems according to their
computational tractability and use the concepts of
complexity as de®ned in Ref. [10]. We analyze the
time complexity of algorithms by O�g�k�� where g
is some function and k is the input length of a
problem instance. We will also report on approx-
imation algorithms in case the scheduling problem
cannot be solved to optimality for some reason.
For o�-line settings we will distinguish between
relative and absolute errors of an algorithm. The
relative error RH is de®ned as

RH �I� � CH�I�=Copt�I� ÿ 1;

where CH�I� is the performance of algorithm H
applied to some problem instance I and Copt�I� is
the value of the corresponding optimal solution.
The absolute error AH is de®ned as

AH�I� � CH�I� ÿ Copt�I�:
In case we investigate on-line settings we refer to a
competitive analysis. Following [43] we call an on-
line scheduling algorithm H to be c-competitive if,
for all problem instances I , CH�I�6 c � COFF

opt �I�
where COFF

opt �I� is the value of the corresponding
optimal o�-line solution.

Many of the problems considered later are
solved applying simple priority rules which can be
executed in O�n log n� time. The rules order the
tasks in some way and then iteratively assign them
to the most lightly loaded machine. The following
rules are the most prominent.
· Shortest Processing Time (SPT) rule. With this

rule the tasks are ordered according to non-de-
creasing processing times.

· Longest Processing Time (LPT) rule. The tasks
are ordered according to non-increasing pro-
cessing times.

· Earliest Due Date (EDD) rule. Applying this
rule all tasks are ordered according to non-de-
creasing due dates.

3. One machine problems

One machine problems are of fundamental
character. They can be interpreted as building
blocks for more complex problems. Such formu-
lations may be used to represent bottleneck ma-
chines or an aggregation of a machine system. For
one machine scheduling problems the only avail-
ability pattern which has to be investigated is a
special case of zigzag with k � 1.

Let us consider ®rst problems where pre-
emption of tasks (jobs) is not allowed. If there is
only a single interval of non-availability with
Bi > 0 and Fi <

P
j pj and

P
Cj is the objective

(1;NCwinjj
P

Cj) Adiri et al. [1] show that the
problem is NP-complete. The SPT rule leads to a
tight relative error of RSPT6 2=7 for this problem
[26]. It is easy to see that also problem 1;
NCwinjjCmax is NP-complete [24].

If preemption is allowed the scheduling prob-
lem becomes easier. For 1;NCwinjpmtnjCmax, it is
obvious that every schedule is optimal which
starts at time zero and has no unforced idle time,
that is, the machine never remains idle while
some task is ready for processing. It is trivial to
construct such a schedule which is optimal for
o�-line and on-line settings. Preemption is never
useful except when some task cannot be ®nished
before an interval of non-availability occurs. This
property is still true for completion time-based
criteria if there is no precedence constraint and
no release date, as it is assumed in the rest of this
section.

While the sum of completion times �1;
NCwinjpmtnjPCj� is minimized by the SPT rule
the problem of minimizing the weighted sum
(1;NCwinjpmtnjPwjCj) is NP-complete [24]. Note
that without availability constraints Smith's rule
[44] solves the problem. Maximum lateness is
minimized by the Earliest Due Date (EDD) rule
[24]. If the number of tardy tasks has to be mini-
mized (1;NCwinjpmtnjPUj) the EDD rule of
Moore and Hodgson's algorithm [37] can be
modi®ed to solve this problem also in O�n log n�
time [24]. Note that if we add release times or
weights for the jobs the problem is NP-complete
already for a continuously available machine ([29]
or [16]).
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4. Parallel machine problems

In this section we cover o�-line and on-line
formulations of parallel machine scheduling
problems with availability constraints. Most re-
sults which are presented refer to o�-line problems;
results for on-line settings are explicitly mentioned.

4.1. Minimizing the sum of completion times

In case of continuous availability of the ma-
chines �P jjPCj� the problem can be solved ap-
plying the SPT rule. If machines have only
di�erent beginning times Bi (this corresponds to an
increasing pattern of availability) the problem can
also be solved by the SPT rule [17,30]. If m � 2 and
there is only one ®nish time F s

i on one machine
which is smaller than in®nity (this corresponds to a
zigzag pattern of availability) the problem be-
comes NP-complete [27]. In the same paper Lee
and Liman show that the SPT rule with the fol-
lowing modi®cation leads to a tight relative error
of RSPT6 1=2 for P2;NCzzjj

P
Cj where machine P1

is continuously available and machine P2 has one
®nish time which is smaller than in®nity.

Step 1: Assign the shortest task to P1.
Step 2: Assign the remaining tasks in SPT order

alternately to both machines until some time when
no other task can be assigned to P2 without vio-
lating F2.

Step 3: Assign the remaining tasks to P1.
Fig. 2 illustrates how that bound can be

reached asymptotically (when � tends toward 0).
The modi®ed SPT rule leads to a large idle time for
machine P1. For ®xed m the SPT rule is asymptotic
optimal if there is not more than one interval of
non-availability for each machine [39].

4.2. Minimizing the makespan

Let us ®rst investigate non-preemptive sched-
uling. Ullman [45] was the ®rst to study the
problem P ;NCwinjjCmax. It is NP-complete in the
strong sense for arbitrary m (3-partition is a special
case) even if the machines are continuously avail-
able. If machines have di�erent beginning times
Bi �P ;NCincjjCmax) the Longest Processing Time
(LPT) rule leads to a relative error of RLPT6 1=2ÿ
1=�2m� or of RMLPT6 1=3 if the rule is appropri-
ately modi®ed [23]. Both bounds are tight. The
modi®cation uses dummy tasks to simulate the
di�erent machine starting times Bi. For each ma-
chine Pi, a task Tj with processing time pj � Bi is
inserted. The dummy tasks are merged into the
original task set and then all tasks are scheduled
according to the LPT rule under an additional
restriction that only one dummy task is assigned to
each machine. After ®nishing the schedule, all
dummy tasks are moved to the head of the ma-
chines followed by the remaining tasks assigned to

Fig. 2. Examples for the modi®ed SPT rule.
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each Pi. The MLPT rule runs in O��n� m� log�n�
m� � �n� m�m� time. In [31] Lee's bound of 1/3
reached by MLPT is improved to 1/4. Note that
the LPT algorithm leads to a relative error of
RLPT6 1=3ÿ 1=�3m� for continuously available
machines [11]. Kellerer [18] presents a dual ap-
proximation algorithm using a bin packing ap-
proach leading to a tight bound of 1/4, too.

Now let us investigate results for preemptive
scheduling. If all machines are only available in
one and the same time interval �B; F � and tasks are
independent the problem is of type P jpmtnjCmax.
Following McNaughton [36] it can be shown that
there exists a feasible machine preemptive schedule
if and only if

max
j
fpjg6 �F ÿ B� and

X
j

pj6m�F ÿ B�:

There exists an O�n� algorithm which generates at
most mÿ 1 preemptions to construct this schedule.
If all machines are available in an arbitrary num-
ber S �Pi Si of time intervals �Bs

i ; F
s

i �; s �
1; . . . ; Si, and the machine system forms a staircase
pattern, Schmidt [41] generalizes McNaughton's
condition and shows a feasible preemptive sched-
ule exists if and only if the following m conditions
are met:

8k � 1! mÿ 1;
Xk

j�1

pj6
Xk

i�1

PCi P�k�;

Xn

j�1

pj6
Xm

i�1

PCi P�m�;

with

p1 P p2 P � � � P pn

and

PC1 P PC2 P � � � P PCm;

where PCi is the total processing capacity of ma-
chine Pi. Such a schedule can be constructed in
O�n� m log m� time after the processing capacities
PCi are computed, with at most S ÿ 1 preemptions
in case of a staircase pattern (remember that any
arbitrary pattern of availability can be converted
into a staircase one at the price of additional
preemptions). Note that in the case of the same

availability interval �B; F � for all machines,
McNaughton's conditions are obtained from P�1�
and P�m� alone. This remains true for zigzag
patterns as then P�2�; . . . ;P�mÿ 1� are always
veri®ed if P�1� is true (there is one availability
interval for all machines but Pm). In [42] the
problem is generalized taking into account di�er-
ent task release times or deadlines. Then it can be
solved in O�nm logm�.

The corresponding optimization problem
�P ;NCscjpmtnjCmax� is solved by an algorithm that
®rst computes the lower bounds LB1; . . . ; LBm ob-
tained from the conditions above (see Fig. 3). Cmax

cannot be smaller than LBk, k � 1! mÿ 1, ob-
tained from P�k�. The sum of availabilities of
machines P1; . . . ; Pk during time interval �0; LBk�
may not be smaller than the sum of processing
times of tasks T1; . . . ; Tk. The sum of all machine
availabilities during time interval �0; LBm� must
also be larger than or equal to the sum of pro-
cessing times of all tasks. In the example of Fig. 3,
Cmax � LB3. The number of preemptions is S ÿ 2.

When precedence constraints are added, Liu
and Sanlaville [32] show that problems with chains
and arbitrary patterns of non-availability
�P ;NCwinjpmtn; chainsjCmax� can be solved in
polynomial time applying the Longest Remaining
Path (LRP) ®rst rule and the processor sharing
procedure of [35]. In the same paper it is also
shown that the LRP rule could be used to solve
problems with decreasing (increasing) zigzag pat-
terns and tasks forming an outforest (inforest) (P ;
NCdeczzjpmtn; out-forestjCmax or P ;NCinczzjpmtn;
in-forestjCmax). In case of only two machines and
arbitrary (which means zigzag for m � 2) patterns
of non-availability �P2;NCwinjpmtn; precjCmax� this
rule also solves problems with arbitrary task pre-
cedence constraints with time complexity and
number of preemptions of O�n2�. These results are
deduced from these for Unit Execution Time
scheduling by list algorithms [8,9]. The LRP al-
gorithm is nearly on-line, as are all priority algo-
rithms which extend list algorithms to preemption
[21]. Indeed these algorithms ®rst build a schedule
admitting processor sharing. These schedules exe-
cute tasks of the same priority at the same speed.
This property is respected when McNaughton's
rule is applied. If a machine availability changes
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unexpectedly, the property does not hold any more
(see results discussed later in this section).

Applying the LRP rule results in a time com-
plexity of O�n log n� nm� and a number of pre-
emptions of O��n� m�2 ÿ nm� which both can be
improved. Therefore in Ref. [4] an algorithm
is given which solves problem P ;NCwinjpmtn;
chainsjCmax with N < n chains in O�N � m log m�
time generating a number of preemptions which is
not greater than the number of intervals of avail-
ability of all machines. If all machines are only
available in one processing interval and all inter-
vals are ordered in a staircase pattern the algo-
rithm generates feasible schedules with at most
mÿ 1 preemptions. This result is based on the
observation that preemptive scheduling of chains
for minimizing schedule length can be solved by
applying an algorithm for the independent tasks
problem. Having more than two machines in the
case of arbitrary precedence constraints or an ar-
bitrary number of machines in the case of a tree
precedence structure makes the problem NP-
complete [4].

If we give up the assumption that all intervals
of non-availability are known in advance on-line
or nearly on-line algorithms are required for the
problem solution. In order to deal with unexpected
machine breakdowns on-line algorithms have to
be applied. This problem is studied by Kalyana-

sundaram and Pruhs [14,15]. In Ref. [14] the
competitive ratios of on-line algorithms are ana-
lyzed for various numbers of faulty machines. The
authors assume that if a machine breaks down, the
task currently being processed has to be resumed
later from the beginning. Also two speci®c types of
breakdowns are considered. In a permanent
breakdown a machine does not recover again; in a
transient breakdown the machine is available
again right after the breakdown. In Ref. [15] it is
examined to which extent redundancy can help in
on-line scheduling with faulty machines.

In Ref. [2] it is shown that no on-line algorithm
can construct optimal makespan schedules if ma-
chines change availability at arbitrary time in-
stances. It is also impossible for such an algorithm
to guarantee that the solution is within a constant
competitive ratio c if there may be time intervals
where no machine is available. To see this we use
the following argument. Let H be any on-line al-
gorithm. Initially, at time t � 0 only one machine
is available. We consider n jobs J1; . . . ; Jn, each of
which has a processing time of 1 time unit. At time
t � 0, algorithm H starts processing one job Jj0

.
Let t0 be the ®rst time instance such that H ®rst
preempts Jj0

or H ®nishes processing Jj0
. At that

time t0 all machines become available. H 's make-
span is at least t0 � 1 because none of the jobs Jj,
j 6� j0, has been processed so far. An optimal

Fig. 3. Minimizing the makespan on a staircase pattern.
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o�-line algorithm will divide the interval from 0 to
t0 evenly among the n jobs so that its makespan is
COFF

max � t0 � 1ÿ �t0=n�. To see that a constant c
cannot be guaranteed we modify the problem in-
stance so that no machine is available during the
interval �COFF

max ; c � COFF
max �. The algorithm H cannot

®nish before c � COFF
max because it has jobs left at

time COFF
max .

Albers and Schmidt also report that things look
better if the algorithm is allowed to be nearly on-
line. In such a case we assume that the algorithm
always knows the next point in time when the set of
available machines changes. Now optimal sched-
ules can be constructed. The algorithm presented
has a running time of O�qn� S�, where q is the
number of time instances where the set of available
machines changes and S is the total number of
intervals where machines are available. If at any
time at least one machine is available an on-line
algorithm can construct schedules which di�er by
an absolute error A from an optimal schedule for
any A > 0. This implies that not knowing machine
availabilities does not really hurt the performance
of an algorithm if arbitrary preemption is allowed.

4.3. Dealing with due date involving criteria

In Ref. [12] it is shown that P jpmtn; rj; ~djj can
be solved in O�n3 minfn2; log n� log pmaxg� time.
The same ¯ow-based approach can be coupled
with a bisection search to minimize maximum
lateness Lmax (see Ref. [20], where the method is
also extended to uniform machines). A slightly
modi®ed version of the algorithm still applies to
the corresponding problem where the machines are
not continuously available. If the number of
changes of machine availabilities during any time
interval is linear in the length of the interval this
approach can be implemented in O�n3p3

max� log n�
log pmax�� [40]. These algorithms need the know-
ledge of all the data at time 0 and are hence o�-
line. When no release dates are given but due dates
have to be considered maximum lateness can be
minimized �P ;NCwinjpmtnjLmax� using the ap-
proach suggested by [42] in O�nm log n� time. The
method needs just to know all possible events be-
fore the next due date.

If there are not only due dates but also release
dates to be considered �P ;NCwinjrj; pmtnjLmax�
Sanlaville [40] suggests a nearly on-line priority
algorithm with an absolute error of A6 �mÿ
1=m�pmax if the availability of the machines follows
a constant pattern and of A6 pmax if machine
availability refers to an increasing zigzag pattern.
The priority is calculated according to the Smallest
Laxity First (SLF) rule, where laxity (or slack
time) is the di�erence between the task's due date
and its remaining processing time. The SLF algo-
rithm runs in O�n2pmax� and it is optimal in the
case of a zigzag pattern and no release dates.

Liu and Sanlaville [32] show that results on
Cmax minimization for in-forest precedence graphs
and increasing zigzag patterns �P ;NCinczzjpmtn;
in-forestjCmax� can be extended to Lmax, using SLF
rule on the modi®ed due dates. Fig. 4 shows an
optimal SLF schedule for an in-tree. The modi®ed
due date is given by d 0j � min�dj; d 0s�j� � ps�j�� where
Ts�j� is the successor of Tj when it exists. In the
same way, minimizing Lmax on two machines with
availability constraints is achieved using SLF with
a di�erent modi®cation scheme. If there are due
dates, release dates and chain precedence con-
straints to be considered (P ;NCwinjrj; chains;
pmtnjLmax) the problem can be solved using a bi-
nary search procedure in combination with a lin-
ear programming formulation [3].

Lawler and Martel [22] solved the weighted
number of tardy jobs problem on two uniform
machines, i.e., Q2jpmtnjPwjUj. The originality of
their paper comes from the fact that they show a
stronger result, as the speeds of the processors may
change continuously (and even be 0) during the
execution. Hence it includes as a special case
availability constraints on two uniform machines.
They use dynamic programming to propose
pseudo-polynomial algorithms (O�Pwjn2�, or
O�n2pmax� to minimize the number of tardy jobs).
Nothing however is said about the e�ort needed to
compute processing capacity in one interval.

If there are more than two uniform machines to
be considered and the problem is to minimize
maximum lateness for jobs which have di�erent
release dates (Q;NCwinjrj; pmtnjLmax) the problem
can be solved in polynomial time by a combined
strategy of binary search and network ¯ow [4]. In
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the same paper the problem is generalized taking
unrelated machines, i.e., machine speeds cannot be
represented by constant factors, into account. This
problem can also be solved in polynomial time
applying a combination of binary search and the
two-phase method given in Ref. [5].

5. Flow shop problems

The ¯ow shop scheduling problem for two
machines with a constant pattern of availability
minimizing Cmax�F 2jjCmax) can be solved in poly-
nomial time by Johnson's rule [13]. Lee [25] has
shown that this problem becomes already NP-
complete if there is a single interval of non-avail-
ability on one machine only. He also gives an ap-
proximation algorithm which has a relative error
of 1/2 if this interval is on machine one or of 1/3 if

the interval of non-availability is on machine two.
Note that the classical ¯ow shop is symmetrical,
but the non-availability interval breaks the sym-
metry. The approximation algorithms are based
on a combination of Johnson's rule and a modi-
®cation of the ratio rule given in Ref. [38]. Lee also
proposes a dynamic programming algorithm for
the case with one interval only.

In Ref. [19] it is shown that the existence of
approximation algorithms for ¯ow shop schedul-
ing problems with limited machine availability is
more of an exception. It is proved that no poly-
nomial time heuristic with a ®nite worst case
bound can exist for F 2;NCzzjt ÿ pmtnjCmax when
at least two intervals of non-availability are al-
lowed to occur. Furthermore it is shown that
makespan minimization becomes NP-hard in the
strong sense if arbitrary number of intervals occur
on one machine only. On the other hand there

Fig. 4. Minimizing Lmax on an increasing zigzag pattern.
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always exists an optimal schedule where the per-
mutation of jobs scheduled between any two
consecutive intervals obeys Johnson's order.
However the question which jobs to assign be-
tween which intervals remains intractable.

Due to these negative results, a branch and
bound algorithm is developed in Ref. [19] to solve
F 2;NCwinjpmtnjCmax. The approach uses John-
son's order property of jobs scheduled between
two consecutive intervals. This property helps to
reduce the number of solutions to be enumerated.
The results based on experiments with the branch
and bound algorithm show that it is easier to deal
with intervals of non-availability on the second
machine than with these on the ®rst one. This can
be explained by the following asymmetry. Any
interval of non-availability on the ®rst machine
may reduce inventory of jobs waiting in the in-
termediate bu�er between the machines, this, in
turn, may result in idleness of the second machine.
On the other hand, no interval of non-availability
on the second machine might result in idle time of
the ®rst machine. The branch and bound algo-
rithms of Ref. [19] outperforms the dynamic pro-
gramming algorithm proposed by Lee [25].
Nevertheless only 1354 instances out of 2100 could
be solved to optimality within a time limit of 1000
seconds.

In order to speed up the solution process a
parallel implementation of the branch and bound
algorithm is presented in Ref. [6]. Computations
have been performed on 1, 2, 3, up to 8 processors.
The experiment has been based on instances for
which computational times of the sequential ver-
sion of the algorithm were long. The maximum
speed up gained was between 1.2 and 4.8 in com-
parison to the sequential version for 8 processors
being involved in the computation.

Based on these results in Ref. [3] constructive
and improvement heuristics are designed for
F 2;NCwinjpmtnjCmax. They are empirically evalu-
ated using the test data from Ref. [19]. For these
instances the optimal solution was not found by
the branch and bound algorithm, lower bounds
were calculated according to the following prob-
lem relaxations.
· Let Jx be a job with shortest processing time on

machine P1. Assume that all the other job pro-

cessing times on P1 are zero. A permutation of
the n jobs having Jx in the ®rst position gives
the lower bound LB1.

· Let Jy be a job with shortest processing time on
machine P2. Assume that all the other job pro-
cessing times on P2 are zero. A permutation of
the n jobs having Jy in the last position gives
the lower bound LB2.

· The optimal solution for the problem where the
machines are continuously available gives the
lower bound LB3.
Clearly, the minimum makespan cannot be

shorter than the maximum of the three lower
bounds. From the experiments it turned out that at
least 2063 instances out of 2100 could be solved to
optimality applying a combination of constructive
and improvement heuristics. The time limit to
achieve this result was set to 30 seconds for each
instance. At least 2055 out of 2100 instances could
be solved combining constructive methods only.
The average computation time for this experiment
was 3.58 seconds per instance. Problem instances
which could not be solved to optimality with both
kinds of combinations of heuristic algorithms had
a worst relative performance of 3.03% and a mean
relative performance of 0.197% above the lower
bound. Most of the heuristics performed better
when the number of jobs was increased. If the in-
tervals of non-availability occurred on machine
one the performance of the heuristics was worse
than in the case when the intervals occurred on
machine two only. This matches with the obser-
vations in Ref. [19]. The results in Ref. [3] suggest
that heuristic algorithms are very good options for
solving ¯ow shop scheduling problems with limit-
ed machine availability.

6. Conclusions

We reviewed results on scheduling problems
with limited machine availability. The number of
results shows that scheduling with availability
constraints attracts more and more researchers, as
the importance of the applications are recognized.
The results presented here are of various kinds.
For very few cases there exist optimal on-line al-
gorithms. More cases can be solved by nearly on-
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line algorithms but the majority of cases can only
be solved to optimality by o�-line algorithms. For
o�-line settings either classical algorithms could be
generalized to solve the problem in polynomial
time, or it could be shown that the problem be-
comes NP-complete due to the availability con-
straints.

In particular, when preemption is not autho-
rized it will logically entail NP-completeness of the
problem. Moreover on-line and nearly on-line
optimization algorithms do not exist in this case. If
one is interested in o�-line optimal solutions for
non-preemptive problems enumerative algorithms
have to be applied; if not approximation algo-
rithms are a good choice. Performance bounds
may often be obtained, but their quality will de-
pend on the kind of availability patterns consid-
ered. If worst case bounds cannot be found
heuristics which can only be evaluated empirically
have to be applied. Most of the positive results
only hold for single machine and parallel machine
systems. Flow shop, open shop and job shop sys-

tems mainly require enumerative and heuristic al-
gorithms. Investigating shop systems are a
challenging ®eld for further research.

We try to summarize most of the results re-
viewed in this paper in Tables 1 and 2. Table 1
di�ers for a given problem type between perfor-
mance criteria entailing NP-completeness and
those for which a polynomial algorithm exists.
Table 2 distinguishes between problem types
which can be solved to optimality (c � 1) in
polynomial time by on-line and by nearly on-line
algorithms. This table covers only preemptive
scheduling problems because it is easy to show that
if preemption is not allowed optimality cannot be
reached by this type of algorithms.

If availability constraints come from unex-
pected breakdowns, fully on-line algorithms are
needed. But many results of optimality concern at
best nearly on-line algorithms (in case of preemp-
tive scheduling). It is an open question to look for
competitive ratios for fully on-line algorithms and
speci®c availability patterns.

Table 1

Results for o�-line settings

Problem Polynomial criteria NP-complete criteria

1;NCwin

P
Cj;Cmax

1;NCwinjpmtn
P

Cj; Cmax; Lmax;
P

wjCj;P
Uj

P
wjUj�constant availability�

P ;NCinc

P
Cj

P ;NCzz

P
Cj

P2;NCwinjpmtn;prec Cmax; Lmax

P ;NCzzjpmtnj; tree Cmax; Lmax �in-tree� Cmax �for NCwin�
P ;NCwinjpmtn; chains Cmax; Lmax

P ;NCwinjpmtn; rj Cmax; Lmax

Q;NCwinjpmtn; rj Cmax; Lmax

F 2;NCwinjpmtn Cmax �single non-availability interval�

Table 2

Results for on-line and nearly on-line settings

Problem On-line algorithm Nearly on-line algorithm

1;NCwinjpmtn
P

Cj; Cmax; Lmax;
P

Uj

P2;NCwinjpmtn;prec Cmax; Lmax

P ;NCzzjpmtn; tree Cmax; Lmax�in-tree�
P ;NCwinjpmtn; chains Cmax; Lmax

P ;NCwinjpmtn; rj Cmax
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