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Abstract Airlines are continually faced with the challenge of efficient utilization of their cockpit

crew resources. In addition to regular flying crews, some airlines have to maintain significant

reserve staffing levels to meet contractual obligations and provide smooth daily operations.

Reserve crews are required to cover trips remaining unassigned due to disruptions during daily

operations. Airlines using a bidline system to award crew work schedules require additional

reserves to cover scheduling conflicts, which result in trips dropping out of optimized bidlines.

Whenever reserves are unavailable to cover these trips during daily operations, the airline has

to pay a premium to cover these trips using regular pilots. The resulting operating expenses can

be significant. Furthermore, inefficient utilization of reserves can cause excessive long-range

crew staffing resulting in additional training and new hire expenses. In this paper, we propose

a new optimization strategy to increase reserve crew utilization and build monthly reserve crew

work schedules by addressing the issue of scheduling conflicts and daily operational reserve

requirements.

1. Introduction

Cockpit crew manpower planning is one of the most important and challenging tasks faced by

major airlines. Crew costs account for a major portion of airline operating expenses and easily
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exceed a billion dollars annually for large airlines. Airline crews are broadly classified into

two categories: regular crews and reserve crews. Regular crews are typically used to cover the

flying needs and their monthly work schedules are optimized to maximize such coverage. But,

in most airlines following a bidline system to award crew work schedules, a large portion of the

flying drops out of these optimized work schedules due to bidding-invoked conflicts (explained

in Section 2). Flying also remains unassigned during disruptions to normal daily operations.

Reserve crews are primarily needed to cover most of this uncovered and unassigned flying.

While most airlines employ substantial resources to increase their regular crew utilization, not

much effort is spent in planning for higher reserve utilization and availability. The current state-of-

the-art reserve planning systems identify daily operational reserve requirements, generate legal

reserve work schedules, and then use a set-covering algorithm to select a subset of reserve work

schedules. A model for planning reserve work schedules at U.S Airways is described by Dillon

and Kontogiorgis (1999). Gaballa (1979) describes a slightly different model to estimate reserve

demand at Qantas Airways using expected overnight flight delays and call-out rates for reserve

crews. Most reserve planning systems fail to capture the various sources of reserve demand, and

the process is completed without much consideration to the fact that flying assigned to reserves

is of varying duration. Failure to explicitly consider such constraints can cost considerable

resources to reassign regular crews from other flying assignments, even though the planned

reserve schedules showed ample coverage. The possibility of bidding-invoked conflicts and the

lack of proper reserve planning methodologies has resulted in higher reserve staffing numbers

and underutilized reserve crews. Pilot manpower has also increased though flying requirements

have not proportionally increased. Some large U.S. airlines carry up to 30% reserve pilots and

typical irregular operations do not justify such a high percentage.

In this paper, we propose an integrated reserve optimization strategy that increases reserve

availability during operations by characterizing reserve demand in terms of open-time trips

(explained in Section 2) and constructing reserve work schedules to cover these open-time

trips. Characterizing reserve demand in terms of open-time trips allows planning for reserve

demand for consecutive days rather than just daily demand. After collecting data from a major

U.S. airline we also observed that scheduling conflicts with recurrent-training (explained in

Section 2) and vacation were the two most significant sources of open-time trips. While it is

difficult to control vacation assignments, scheduling recurrent-training using reserve availability

constraints is possible. Hence, we also propose constructing recurrent-training schedules after

the bidding-and-award process is completed. The new model controls reserve utilization by

reducing open-time trips and penalizing reduction in reserve availability.

The structure of the remaining paper is as follows: Section 2 provides a brief description of the

planning process and term definitions. Related literature is also reviewed in Section 2. Section 3

describes reserve schedules, reserve pay structures, and operational costs. Section 4 describes

the basic algorithmic framework, the models used to estimate reserve demand, and the two

phase optimization procedure to select reserve patterns. We also provide results of some related

computational experiments in Section 4. In Section 5 we discuss a recurrent-training-scheduling

model that explicitly includes reserve availability constraints while assigning training schedules

to crew members. The computational experiments in Section 5 show the effectiveness of the

training model in controlling reserve availability. Finally, we conclude the paper in Section 6.

2. The premonth planning process

Building crew work schedules includes many complex tasks. Figure 1 depicts the planning

process (also called the premonth planning process) for constructing monthly crew work



J Sched (2006) 9:203–221 205

OPEN-TIME TRIPS

Conflict Resolution

PRE-MONTH    PLANNING    BEGINS

MONTH   OF   OPERATION   BEGINS

Bidding and Award

Trip disruptions due to weather/unscheduled aircraft maintenance

Crew pairing optimization

Regular-bidline generation

Reserve-bidline generation

Vacation assignment

Initial-training assignment

Recurrent-training assignment

irregular operations
Unassigned trips during

BLOCK 1 BLOCK 2

Flight  instructor scheduling

Reseve Demand

Fig. 1 The premonth planning process: Bidding-invoked conflicts result in a large number of open-time trips

schedules. Two parallel sequences of complex scheduling tasks are shown within the dotted

blocks. Solid arcs indicate the sequence of planning operations and parallel blocks imply no

direct dependency of processes across these blocks. Dotted arcs indicate sources contributing to

scheduling conflicts, which are explained later. Schedules built during premonth planning are

executed during the month of operation.

First, the crew planners build trips (or pairings), which are legal strings of flights, with

intervening periods of rest, that begin and end at a crew base or domicile (crew pairing

optimization). There is substantial literature available on optimizing trips built for regular

crews (Anbil et al., 1991; Anbil, Tanga and Johnson, 1992; Barnhart et al., 2003). Barnhart

et al. (2003) provide a detailed survey of the airline crew scheduling problem. Then, the crew

planners construct crew work schedules, called regular-bidlines (or regular-lines) to cover these

trips. Significant literature is also available on the regular-bidline generation problem (Jarrah

and Diamond, 1997; Christou et al., 1999; Campbell, Durfee and Hines, 1997, Weir, 2002);

though airlines tend to have a large number of business rules unique to their operation. The

underlying mathematical model is a set-partitioning formulation very similar to the crew pairing

optimization model. While the crew scheduling department constructs regular-bidlines with

pairings, planners from the training department build and assign training schedules to eligible

pilots. The training planners first build initial-training schedules and then recurrent-training
schedules. Initial-training is a one-time event for crew members moving to a different fleet while

pilots must periodically participate in recurrent-training to remain qualified to fly in their fleets.

Initial-training affects crew manpower planning and the complexity of manpower planning and

training is described in Yu, Dugan and Argüello (1997), where a heuristic approach is described

to solve the problem. Qi, Bard and Yu (2004) describe an integer programming formulation

for an initial-training class scheduling application at Continental Airlines. The issue of reserve

crew manpower planning is not addressed specifically.
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Although regular-bidlines represent work schedules, they are not personalized to meet in-

dividual pilot’s assignments for training, vacation, and sick leave until the airline finalizes the

bid awards. Once the crew scheduling department has constructed the regular-bidlines, crew

members bid for these optimized regular-bidlines. A separate bidding-and-award process based

on seniority ranking is used to award these regular-bidlines. During the bidding process, pilots

can bid for work schedules that may conflict with their vacation or training assignments (creat-

ing bidding-invoked conflicts). Crew planners resolve these conflicts during a conflict-resolution

phase. Since crew planners optimize regular-bidlines to maximize coverage of trips, bidding-

invoked conflicts result in many trips dropping out of the regular-bidlines. These uncovered
(dropped) trips are collectively called open-time; in some instances almost 40% of the trips drop

out of optimized regular-bidlines into open-time. A direct conflict results in trips becoming un-

covered because the training period and a scheduled trip overlap, while an indirect conflict occurs

when scheduled trips and training violate regular-bidline and monthly work-legality rules. Thus,

the demand for reserves is significantly increased by the need to cover open-time trips due to

bidding-invoked conflicts.

Even though airlines employ crew recovery optimizers to fully utilize regular crew members

during disruptions (Lettovský, Johnson and Nemhauser, 2000; Stojković and Soumis, 1998),

reserve crews are still needed to provide smooth operations. These models implicitly assume

that the operations control center knows about regular crew availability. This is often not the

case; due to contractual guidelines. During irregular operations, if the planned crews are unable

to fly their planned trips, volunteers (from the pool of regular-bidline holders) are sought to

cover these trips. If no volunteers are available, reserve crew members are assigned to these

trips based on availability. If reserves are not available, regular crew members may be drafted,

at premium pay (typically twice the regular pay), to fly these trips. Thus, reserve unavailability

is an expensive proposition, especially when voluntary flying is low.

In most bidding-and-award systems, where work schedules are not personalized, scheduling

conflicts seem inevitable. This is partially due to the fact that work assignments are made in-

dependently. Personalized crew rostering systems and preferential bidding systems, adopted by

some North American carriers and most European carriers, have an advantage in this respect.

Gamache et al. (1998) describe a preferential bidding system application at Air Canada, and

Day and Ryan (1997) describe a rostering application for cabin crews at Air New Zealand. But

seniority based preferential bidding systems may suffer from the deficiency that the resulting

roster may lead to perception of inequity within crew ranks. Careful adjustments have to be made

to make sure that crew members understand how their preferences are scored and satisfied.

3. Reserve crew schedules

Reserve crew work schedules, unlike regular-bidlines, do not consist of pairings strung together.

Instead, they consist of groups of consecutive on-duty and off-duty days, and are also referred to

as reserve patterns. An example of a 30-day pattern is,

1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1

where, ‘0’ indicates an off-duty day and ‘1’ indicates an on-duty day. The total number of off-

duty days and the groupings of the off-duty days determines a pattern type. Since pattern types

depend on the contract, the potential number of legal patterns can vary from a few thousand

to several million. Airlines use different types of patterns for different types of reserve crews

(domestic, international) and often employ more than one type for a particular set of reserve
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crews. Pattern restrictions include maximum and minimum number of consecutive on-duty and

off-duty days within a pattern, maximum number of singleton off-duty (off-duty day by itself)

days, and fixed number of golden days (inviolable off-duty days) and their distribution within

the pattern. Planning restrictions may include minimum number of off-duty reserve crews per

day, and maximum allowable unavailability of reserves on weekends and holidays.

Reserve patterns are identified by the consecutive off-duty day groupings within the pattern.

Thus, a 4-3-3-2 pattern type implies a pattern with exactly one consecutive off-duty grouping of

length 4, exactly two off-duty groupings of length 3 and exactly one off-duty day grouping of

length 2. The length of consecutive on-duty day groupings lies between 3 and 5 days. We use a

similar notation to describe reserve patterns throughout this paper.

3.1. Reserve pay structure and operational costs

Regular crews and reserve crews are paid differently based on negotiated contracts. Typically,

regular crew pay is a combination of the total flying hours, total duty time, and time away from

base. Depending on the pilot contract, in case of a trip conflict regular crew members are paid

the maximum of the trip pay or the training pay; and, if the dropped trip arises due to vacation

conflict, the crew member gets paid for vacation. In either case, the airline has to pay some

additional amounts to cover the dropped trip. Assuming that a trip has at least 4 hours of flying

time, and that there are several hundred trips in open-time, a conservative estimate of the cost

corresponding to these open-time trips is in the range of 0.5 to 1 million dollars per bid period.

By contrast reserve crews are paid for a fixed number of hours every bid period (called reserve

guarantee). If a reserve flies a trip, the guaranteed hours of pay are reduced by the corresponding

trip duration and the crew member is paid for the trip. Thus, reserve pay consists of adjusted re-

serve guarantee, and pay for flown trips, and is expressed as the sum of these two components. As

described earlier, the pay incentives are different during daily operations depending on the number

of volunteers and reserve availability. When we analyzed sample data from the crew scheduling

department of a large airline, the premium pay range was in the range of tens of millions dollars

annually. Average reserve utilization was less than 40% of the reserve guarantee in many fleets.

4. Building reserve patterns

Planning reserves to cover trips in open-time is resolved by solving the problem in two phases; the

first phase generates reserve demand estimating open-time trips and the second phase described

Fig. 2 The two phases of the
reserve optimization algorithm:
Phase 1 estimates the reserve
demand and phase 2 generates
patterns to cover the demand



208 J Sched (2006) 9:203–221

earlier, reserve demand is due to premonth bidding-invoked conflicts and unplanned daily op-

erations (or irregular operations) (Fig. 2). Since the open-time trip pool is used to characterize

reserve demand, we use the term open-time to define trips from both these sources. We de-

scribe strategies to estimate open-time trips in Sections 4.1 and 4.2, and then we describe the

optimization strategy in Section 4.3.

4.1. Estimating reserve demand due to bidding-invoked conflicts

To estimate bidding-invoked conflicts we have to understand the bidding-and-award process and

pilot preferences. The attractiveness (Ci j ) of a regular-bidline i to a crew member j depends on

personal preferences of individual crew member j. We assume a simplistic model based on the

pay incentives resulting from a conflict while ignoring any other quality of life issues. The idea

is to solve a regular-bidline assignment problem with the objective of maximizing conflict. We

define a binary variable, Bi j , such that it takes a value of 1 if regular-bidline i is assigned to crew

member j and 0 otherwise. We define δ
i j
cd to be 1 if assigning regular-bidline i to crew j drops a

c day long trip on day d and 0 otherwise.

We also compute the value of �cd (from observed historical data) that limits the number of

conflicting c-day long trips beginning on day d. This value of �cd allows the predicted open-time

to be realistic. Assuming that we have more crew members than regular lines, the solution to

model MAXCONF

MAXCONF : max
∑

i

∑
j

Ci j Bi j

∑
i

Bi j ≤ 1 (4.1)

∑
j

Bi j = 1 (4.2)

∑
i

∑
j

δ
i j
cd Bi j ≤ �cd∀d, c (4.3)

Bi j ∈ {0, 1}
gives us the profile of the trips dropped under the strategy of creating a maximum conflict.

Constraint (4.1) ensures that a crew member holds at most one regular line while constraint (4.2)

ensures that a regular-bidline must be awarded to exactly one regular crew member. Constraint

(4.3) restricts the model from dropping too many trips on any given day. An optimal solution to

MAXCONF gives the reserve demand due to bidding-invoked conflicts.

4.2. Estimating reserve demand for daily operations

Reserve demand during daily operations is primarily due to unplanned schedule disruptions. Most

real time crew recovery procedures, during disruptions, attempt to swap parts of pairings within

regular crew members to provide low-cost solutions. Reserves are used if flights cannot be covered

and fall out into open-time. Move-up crews (Shebalov and Klabjan, 2004) provide a good opportu-

nity to swap pairings and may be described as crews that are available and legal to cover a disrupted

flight sequence of another crew with the following conditions: Both crews belong to the same

base, and both crews have the same number of duty hours beyond the station under consideration.

Planning for reserve crew availability, at crew bases with limited move-up crew availability,

may provide additional relief without raising planned costs. Flight legs at crew bases (which
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Fig. 3 A sample reserve work schedule based on a 4-3-3-2 reserve pattern

normally coincide with hubs) that do not have move-up crews are identified and the remainder

portion of the trips (beyond the identified leg arriving into the base) are included with other open-

time trips as potential reserve demand. In large fleets, with a large number of crews, it may suffice

to include only a few trips as reserve demand. Another strategy to estimate operational reserve

demand is to use a stochastic tool like SimAir which simulates airline operations (Rosenberger,

2001; Rosenberger et al., 2002). Given crew regular-bidlines, aircraft rotations, block times and

aircraft maintenance distributions, expected weather patterns, and various recovery policies for

aircraft and crews, SimAir simulates the operation of the flight schedule. We modified SimAir to

simulate monthly reserve demand based on irregular daily operations (due to weather disruptions

and unplanned aircraft maintenance). We integrated a crew recovery optimizer to estimate the

number of disrupted trips, on each day of the bid period, that contributed to the operational

reserve demand. These trips also provided an estimate for the consecutive days a reserve crew

member was required.

4.3. Optimizing reserve patterns

The second phase of the algorithm generates a set of reserve patterns that cover the trips in

open-time. Before we describe the optimization approach, we define the following terms: A

reserve duty period is a string of trips which can be flown in the specified sequence without any

rule violations; and, reserve work schedule is a bid period-long sequence of reserve duty periods

mapping to a legal reserve pattern (Fig. 3).

The optimization process is split into two phases; phase A selects a set of reserve duty periods

that cover all the trips in open-time, and phase B selects the required number of reserve patterns

to generate reserve work schedules. The nature of trips covered in each duty period is not as

critical as the number of reserve duty periods generated on each day of the month and their

duration. Hence, in phase B it suffices to only deal with a smaller set of reserve duty periods that

cover the open-time trips. This serves as the primary motivation to split the optimization process

into two phases; the other critical reason being the ability to control the computational time to

generate solutions.

The models developed for both phases are standard set-covering and set-partitioning models.

The objective of phase B is to cover the maximum number of reserve duty periods with the

required (or minimum) number of reserve patterns. Given a set of reserve duty periods, patterns

Table 1 Reserve pattern selection:
Patterns providing higher coverage
possibilities are preferred

Patterns Duty periods

Day P1 P2 P3 D1 D2

1 0 1 1 1 0

2 1 1 1 1 1

3 1 0 1 0 1
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can be selected in numerous ways to provide coverage (since each reserve pattern provides

coverage for a fixed number of days). The costs associated with reserve duty periods along

with the number of reserve duty periods covered by a reserve pattern provide a mechanism for

distinguishing between these solutions. Consider the following example. Suppose we have a 3-day

bid period with exactly two reserve duty periods D1 and D2 operating on days shown in Table 1.

Let us also assume that we have exactly three reserve patterns P1, P2, and P3 which have on-duty

days (indicated by 1) as shown in Table 1. Clearly, P1 covers D2, P2 covers D1, and P3 provides

cover for both D1 and D2. If we have to choose exactly one reserve pattern then choosing P3

provides a better operational solution. Since with just one reserve pattern we can cover either D1

or D2 during operations. Since the number of volunteers available to fly specific open-time trips

are confirmed closer to the day of operation, reserve pattern P3 provides the flexibility to cover any

duty period with fewer volunteers. Similarly, if we have to choose two reserve patterns we would

prefer choosing P3 twice rather than choosing P1 and P2 once. Since, setting the pattern score

appropriately provides good operational solutions, we employ an increasing scoring function

that depends on the number of reserve duty periods covered. For our computational experiments,

we use the function Ip = β. ln(|Sp|), where Sp is the set of reserve duty periods covered by

pattern p and β is a positive nonzero scalar multiplier. It is assumed that Sp �= ∅.

4.4. Phase A: Generating reserve duty periods

We assume that the length of any grouping of consecutive on-duty days within a reserve work

pattern is between 3 and 5 days. This assumption is not restrictive and can be easily modified,

based on business and contractual requirements, without affecting the solution procedure. De-

pending on the number of trips in open-time, the possible number of reserve duty periods of any

duration is prohibitively large. Since generating all combinations is computationally expensive,

we restrict our model to duty periods with durations between 3 and 5 days. Furthermore, the

on-duty groupings within the reserve patterns determine the maximum length of a reserve duty

period. The primary objective is to cover the set of trips with the minimum number of reserve

nodes

d

Day  d begins Day    d+5 begins

Sliding window of 5 days

Dummy Trip

d+4d+3d+2d+1

s t

trips as

Fig. 4 Sliding window duty period graph: Reserve duty periods of the appropriate length are generated using a
modified depth-first-search algorithm
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duty periods of these specified durations. We try to reduce the number of reserve duty periods

with idle days (days when the duty period does not cover any trip or a portion of a trip) by

generating reserve-duty periods with the least number of idle days.

For example, consider five consecutive days starting on any day d within a month-long bid

period. Construct a reserve-duty period graph, as shown in Fig. 4, where the nodes are the trips

that start and end within this 5-day time window. Figure 4 shows all trips starting on day d and

ending before the beginning of day d + 5. If no trip exists starting on a day then a dummy trip,

one day in duration, is added at the beginning and ending on that particular day. Two special

one day duration nodes, s and t, are also added to the graph. A directed arc exists from node

i to node j if the starting day of j is the day after the end day of trip i; thus, we control the

number of idle days in a reserve duty period. Additional directed arcs are added from node s to

all nodes beginning on day d and from all nodes ending on day d + 2, d + 3, and d + 4 to node

t. A directed path from s to t in this graph is a reserve duty period of length between 3 and 5

days. Using reserve duty period graphs for each day of the month, we generate all possible 3-,

4-, and 5-day reserve duty periods using the trips in open-time.

In general, let D define the set of duty periods generated and T denote the set of trips in

open-time. Let i and j index over the sets D and T, respectively. Define Ci to be the cost of

reserve duty period i and Q j to be the cost associated with trip j. Ci depends on
∑

j∈i Q j ∀i .
Now, define αi j such that it takes a value of 1 if duty period i ∈ D covers trip j ∈ T and 0

otherwise. Furthermore, define variable Xi such that it is set to 1 if duty period i ∈ D is selected

and 0 otherwise. Also define O j such that O j > 0 if trip j ∈ T is over covered (more that one

duty covers the trip). The solution to the optimization problem (MINDP), where Pj is the penalty

for over covering trip j, provides a minimum cost reserve duty period cover for all the trips in

open-time.

MINDP: min
∑
j∈T

Pj · O j +
∑
i∈D

Ci · Xi

∑
i∈D

αi j Xi − O j = 1 ∀ j ∈ T (4.4)

Xi ∈ {0, 1} ∀i

O j ≥ 0 and integer ∀ j

Constraint (4.4) enforces that each trip is covered by at least one duty period.

4.5. Phase B: Generating reserve work schedules

In most cases there are only a few thousand legal reserve patterns that meet all the contractual

obligations. Hence enumerating all possible combinations of legal on-duty and off-duty days

is possible. Suppose J represents the set of all types of reserve patterns and the set K denotes

the different pattern types. Let a solution to MINDP be denoted by D∗. We need to choose,

with replication, the minimum number of patterns covering the consecutive day requirements

generated using D∗.

Suppose that the length of the bid period is M1. Notice that every pattern consists of a few

(typically 4 to 5) groups of consecutive on-duty days. Each grouping of consecutive on-duty days

may have 3, 4, or 5 on-duty days. If a grouping of five consecutive days begins on day d, then the

pattern can be used to cover any reserve duty period of lesser duration beginning on day d; but

we would like to use this pattern to cover a specific duty period of a specific duration. To achieve

this kind of separation we generate additional patterns, using the patterns from the base set J ,
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with idle days. Suppose the pattern is used to cover a 3-day reserve duty period beginning on day

d, then days d + 4 and d + 5 are idle days. For every standard reserve pattern (template pattern),

p ∈ J , we generate all possible patterns with different on-duty days and idle day combinations

while ensuring that: (i) the minimum and maximum number of consecutive working days in each

group are within 3 and 5; (ii) the number of on-duty groupings are exactly the same as the base

pattern p with a one-to-one correspondence between the groupings; and, (iii) the starting day of

any grouping of consecutive on-duty days matches an on-duty in the template pattern p within

the corresponding grouping. Generating all patterns allows the optimization model to choose

patterns, built from the same template, and to target different duty periods of different lengths.

Let the patterns generated be denoted by the set P . From reserve duty periods in D∗ we

compute the number of c day-long reserve duty periods beginning on day d and denote it by qdc.

Since reserve duties D∗ contain dummy trips and over-covered trips, we split such reserve duty

periods into duty periods of smaller duration that do not contain dummy trips. Thus, qdc may have

values for shorter duty period lengths too. This also provides the opportunity for better coverage.

Let Q denote the corresponding reserve duty period requirements vector with components qdc.

We denote a pair of a bid period day d and c consecutive on-duty days as (d, c) and let the number

of such (d, c) pairs be denoted by M2. Clearly the dimension of Q is M2. Note that, beginning

on every day d of the bid period, a reserve pattern may have exactly c consecutive on-duty days.

Further, define Pk as the set of all legal patterns, in the set P , of type k ∈ K and let p index

over the set P . Let us also define two matrices A and B with dimensions M2 × |P| and M1 × |P|,
respectively. Each row in A corresponds to a (d, c) pair and each row of B corresponds to a

bid-period day. The entries a(d,c),n ∈ A and bmn ∈ B are defined as follows:

a(d,c),n =
⎧⎨⎩

1 : If pattern n has exactly c consecutive

on-duty days starting on day d
0 : Otherwise

bmn =
⎧⎨⎩

1 : If pattern n has an off-duty day on day

m (not idle day)

0 : Otherwise

We compute the score vector, I, with coordinates corresponding to incentive of each pattern

p computed using the scoring function. Furthermore, assume that we are given the number of

reserve work schedules required (R), the number of patterns of type k required (Lk), and the

number of off-duty reserve crew members required on day d of the bid period (O).

If the integer variable Yp represents the number of times a particular pattern p is selected, the

optimization model, RESOPT, can be described as follows:

RESOPT: min (P · U − I · Y )∑
p∈Pk

Yp ≥ Lk ∀ k ∈ K (4.5)

A · Y + U ≥ Q (4.6)

B · Y ≥ 0 (4.7)

|P|∑
p=1

Yp ≤ R (4.8)

U ≥ 0, and Yp ≥ 0 and integer,



J Sched (2006) 9:203–221 213

where P is the penalty, of dimension M2, for not meeting the target cover value on day

d for c consecutive on-duty days, and U be the corresponding under coverage vector. Y =
(Y1, . . . , Yp, . . . , Y|P|)T represents the pattern selection vector. Constraint (4.5) guarantees the

requisite number of different pattern types are selected, while constraint (4.6) ensures that the

(d, c) requirements are met. Constraint (4.7) is required to guarantee that any solution has the

minimum number of off-duty reserve crews on each day of the bid period. The model selects at

most R patterns due to constraint (4.8).

4.6. Computational experiments

As a basis for comparison, we used a model that selects a set of reserve patterns meeting

projected daily requirements. We refer to this model as MOD1. Table 2 shows a comparison

between the performance of the proposed reserve model (RESOPT) and MOD1. Comparing the

models allows us to demonstrate the need to characterize reserve demand in terms of both daily

requirements and consecutive day requirements. The comparison is not intended to demonstrate

the use of fewer reserves. The rules used to generate daily requirements for MOD1 were based

on typical business rules used by the crew scheduling department. These rules compute daily

reserve requirements as a percentage of the number of regular-bidlines constructed and expected

number of reserves needed to cover bidding-invoked conflicts. Additionally, a fixed percentage

of the total number of regular-bidlines constructed is specified as the minimum. MOD1 selects a

set of reserve patterns that not only meets these daily requirements but also meets the minimum

off-duty constraint.

We used 4-3-3-2 and 4-4-4 pattern types with at most five consecutive on-duty days for

all the test cases. Typically the minimum off-duty constraint (4.7) guarantees 20% of the total

number of reserves are off-duty. But this constraint was relaxed for these test instances. In all

test problem instances, the set of template reserve patterns did not have more than 5000 patterns,

i.e., |J | ≤ 5000, and |P| ≤ 125000. We used ILOG CPLEX 7.0 (see ILOG, 2000) to solve the

resulting integer programming instances. All the test instances were run on an HP 9000/899

server running HP-UX 11.0. We measured the effectiveness of the proposed planning model

by the number of trips left uncovered in open-time (since these trips could result in premium

pay) and the minimum number of reserve patterns required. In Table 2 column (0) identifies the

problem while column (1) shows the number of open-time trips of varying duration (these include

dummy trips). Column (2) shows the number of 3- to 5-day reserve duty periods generated and

column (3) shows the minimum number of reserve duty periods selected to cover all the trips in

open-time. Column (4) differentiates the models used to obtain the solution. Column (5) shows

the maximum number of reserve patterns selected in the final solution. Column (6) tabulates

the overall run time for RESOPT. Column (7) shows the total number of uncovered trips in

open-time. The table does not list the run time for model MOD1 since these are insignificant

(less than 15 seconds). In all test instances, the Q vector computed (after removing dummy trips)

from the solution to phase A (D∗) had a large proportion of short-duration reserve duties (1 or 2

days). A key observation, from Table 2, is that RESOPT leaves fewer number of uncovered trips

from the open-time pool, thus controlling the expected cost exposure during daily operations.

RESOPT also uses fewer reserve crews in these test instances.

4.6.1. Varying pattern types

Pattern types used within RESOPT affect the minimum number of reserves required to cover

trips in open-time. Table 3 shows a comparison between five different pattern types, each with

a minimum of three consecutive on-duty days and a maximum of five consecutive on-duty days
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Table 2 RESOPT results: In these problem instances the model leaves fewer uncovered trips

(0) (1) (2) (3) (4) (5) (6) (7)

# Open # Reserve # Min. # Uncovered

Name trips duty periods duty periods Model # Reserve CPU (seconds) trips

Pr L 1 537 7219 422 MOD1 100 — 20

RESOPT 54 385 0

Pr L 2 448 1341 380 MOD1 60 — 19

RESOPT 34 263 0

Pr L 3 561 27669 367 MOD1 90 — 28

RESOPT 52 291 0

Pr L 4 335 933 277 MOD1 52 — 11

RESOPT 27 262 0

Pr L 5 350 956 282 MOD1 65 — 13

RESOPT 34 261 0

Pr L 6 211 397 182 MOD1 35 — 8

RESOPT 18 282 0

Pr L 7 183 337 154 MOD1 30 — 7

RESOPT 17 261 0

Table 3 Reserve pattern type comparisons using the RESOPT model

Pattern type

4-3-3-2 4-4-4 3-3-3-3 2-2-3-3-2 9-1-1-1
# Patterns

Problem available (1500) (64) (125) (10370) (1288)

Pr 1 # Trips/Duties 297/837

# Columns 102677 13328 8613 73933 111675

# Reserves 51 64 54 51 60

CPU (seconds) 217 24 15 157 258

Pr 2 # Trips/Duties 258/528

# Columns 102677 13328 8613 73933 111675

# Reserves 50 61 54 51 60

CPU (seconds) 215 23 14 165 256

Pr 3 # Trips/Duties 349/4973

# Columns 102677 13328 8613 73933 111675

# Reserves 51 66 58 51 60

CPU (seconds) 222 25 16 170 262

(except near the beginning and end of the bid period). Each column represents a pattern type

(denoted by the consecutive off-duty day groupings within the pattern). Three problem instances

(Pr 1, Pr 2, and Pr 3), with varying open-time trips, were tested to illustrate the difference. For

each problem, the number of trips in open-time, the number of reserve duty periods generated

after phase A, and the total available patterns are listed. The solution shows the number of reserve

patterns selected to cover the duty periods, and the computational time.

Pattern 4-3-3-2 and 2-2-3-3-2 require the least number of reserves for the obvious reason that

the choice of patterns is larger in either case. Surprisingly, type 3-3-3-3 performs better than
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Table 4 Varying pattern mix using
the RESOPT model Min. % Min. % CPU # Trips

4-3-3-2 4-4-4 # Reserves (seconds) uncovered

20 20 52 257 0

20 30 55 257 0

20 40 58 257 0

20 50 62 304 0

20 60 65 256 0

20 70 72 257 0

0 0 51 257 0

Note. The model is sensitive to the
pattern types used to solve the
problem instances.

9-1-1-1, even though the number of available patterns is significantly smaller. This is due to the

better distribution of on-duty days within the available patterns. The computational time is not

a significant issue in either of the problems. Across the three problem instances, the variation in

the number of reserve lines is not significant due to the nature of the trips in open-time.

Table 4 shows the effect of using pattern combinations within the same optimization

run. The level of 4-4-4 patterns is varied from 20 to 70% while holding the level of 4-

3-3-2 patterns constant at 20%. The number of reserves required to cover trips in open-

time increases as the required mix of 4-4-4 patterns increases. When RESOPT is allowed

to choose between 4-3-3-2 and 4-4-4 patterns (last row), the 4-3-3-2 is used exclusively in

the optimal solution. All problem instances had 297 trips in open-time and 837 reserve duty

periods.

5. Increasing operational reserve availability

Bidding-invoked conflicts due to recurrent-training assignments and vacation are one of the

major contributors to open-time trips. We propose a scheme where recurrent-training sched-

ules are assigned after the bidding-and-awards process is completed. Rather than assign train-

ing without knowing the trips on the regular-bidline, the idea is to build and place recurrent-

training schedules on the bidline with the minimum possible conflict. While scheduling conflicts

are inevitable, such a change in the process allows the recurrent-training scheduling model

to control the number and duration of trips in open-time while maintaining sufficient re-

serve availability (even though the reserve patterns are already awarded). In Section 5.1 we

briefly explain the problem, the model, and some computational results. Schoni (2002) pro-

vides a detailed description of the recurrent-training scheduling process and the algorithmic

framework.

5.1. Controlling reserve availability in recurrent-training scheduling

Airline pilots must train periodically to maintain flight qualifications within a particular fleet and

position (captain, first officer, or second officer). Typically more than 60% of the total monthly

pilot training is due to recurrent-training and every pilot must complete training within a specified

time period annually. Training includes class room instruction, called ground school training,

and training in simulators. The total time available on simulators is divided into fixed number

of time slots each day and simulator training is conducted for an entire or partial time slot

depending on training requirements. Individual training requirements vary depending on current

qualification level, fleet type, position, and other considerations. Pilots follow predetermined



216 J Sched (2006) 9:203–221

-

CVG

Ground
school

ATL

Deadhead

MIA CVG

Day 3Day 2Day 1

GS-1 ST-1 ST-2 ST-3

Sim 1: Slot A Sim 2 : Slot B Sim 1 : Slot BDeadhead Deadhead

Fig. 5 Recurrent-training schedule example

training footprints which specify the training sequence. An example of a footprint designation is

4-day 767-A GS-1 ST-1 ST-2 ST-3 standard domestic where 4-day signifies that ground-school

and simulator-training require 4 days; A stands for the position type (in this case a captain); GS-1
is the code for a particular type of ground school training; and, ST-1, ST-2, and ST-3 represent

specific simulator training events. Figure 5 shows a training schedule of one ground school period

and three simulator training periods for a 767 captain based in Cincinnati (CVG). The pilot has

to deadhead to Atlanta (ATL) to attend a particular ground school training event denoted by

the code GS-1. The pilot has to further deadhead to Miami (MIA) after ground school to attend

simulator training events denoted by the codes ST-1, ST-2, and ST-3. After completing three

simulator training days in MIA, the pilot deadheads back to CVG. Note that simulator training

is scheduled on different physical simulators at different times during the day; this occurs due to

simulator maintenance, student pairings, or simulator capabilities. Crew members typically have

a fixed time window in the year to complete training. Training schedules are built for an entire

bid period that is usually 30 or 31 days in duration. The bid period in which a crew member

is scheduled for training, which typically corresponds to the month of hire, is called the due
bid period and all such crews are called due crews. A crew member may be trained, if training

capacity exists, in a bid period prior to his due bid period and such crew members are classified

as prior-to-due. If crew members do not receive training during their prior-to-due or due bid

periods, then they must receive training in the bid period that immediately follows their due

bid period and are classified as grace crews. Grace crews have the highest priority in receiving

training during any bid period since they risk losing their flight qualification the following month.

Recurrent-training scheduling broadly describes the problem of finding a minimal cost pilot

assignment to classroom sessions and simulator time slots, based on specific training footprints.

Such assignments, including any deadhead flights if required, constitute pilot training schedules

(see Fig. 5). All training, including deadheading back to the crew bases, must begin and end

within the bid period.

We now present a condensed version of the model described by Schoni (2002) to illustrate

the effectiveness of our proposed reserve availability constraints and objectives. Schoni et al.

(2003) describe an application of a similar model at Delta Air Lines where the reserve constraints

and penalties are not specifically modeled. By controlling the number of trips in open-time, the

airline was able to save $7.5 Million in operating costs. The costs associated with assigning

recurrent-training to a regular crew member includes the cost of trips dropped due to conflict,

training, pay, and instructor costs. The basic idea is to drop shorter trips on days when reserves are

available to cover these trips. At the same time, we do not want to exhaust the reserve availability

on any given day of the bid period.

Suppose that we construct a set of recurrent-training schedules, throughout the bid period, that

may be assigned to individual crew members. Let i, j, and s be indices over the set of recurrent-

training schedules, crew members, and simulator slots, respectively, and c ∈ {1, 2, 3, 4} denote

the number of consecutive days. We denote the cost of assigning recurrent-schedule i to crew
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Fig. 7 Recurrent-training overlap
with on-duty days in a pattern
results in loss of reserve availability

member j by Li j . In the case of a reserve crew member undergoing recurrent-training, we propose

a penalty cost function corresponding to the reduction in operational availability, and overlap

with off-duty days. Figure 7 shows some possibilities of recurrent-training overlap with reserve

bidlines (only sections of the lines are shown). On-duty days within a reserve pattern are valued

differently; Fig. 6 shows a typical cost function used to compute the cost associated with overlap.

In the example shown, the cost of overlapping a training schedule with day 8 is higher than the

remaining days. Assignment (c) in Fig. 7 is generally more preferable than (b). Note that the

reserve availability is the least affected in (c). Similarly assignment (d) is more preferable than (a)

since fewer on-duty days are violated in (d) than in (a). Furthermore, the off-duty day immediately

after the end of training in (d) provides a 24-hour rest period.

We also propose including an additional penalty for dropping trips on days when reserve

crews are unavailable and including reserve availability constraints for 1, 2, 3, and 4 consecutive

on-duty days beginning each day of the bid period. Let this cost component be denoted by Rcd .

Let Acd denote the number of reserves available for c days starting day d, Sj denote the set of

schedules for crew member j, and C j denotes the cost of leaving crew member j unassigned.

The reserve availability (Acd ) is computed from the reserve bidlines that have already been

constructed. Further, let δ
i j
cd take a value of 1 if assigning schedule i ∈ Sj to crew j drops a c

day-long trip on day d and 0 otherwise, and α
j
is is set to 1 if schedule i ∈ Sj uses simulator slot

s and 0 otherwise.

We now define variables Xi j , U j , and Ecd . Xi j is set to 1 if schedule i ∈ Sj is assigned to crew

j and 0 otherwise. U j takes a value of 1 if crew member j remains unassigned and 0 otherwise.

Ecd represents the amount by which reserve availability is exceeded on day d for c consecutive

days.

The recurrent-training model, for assignment of a set of available recurrent-training schedules

to a subset of crew members, can now be expressed as follows:

RECTRN :

min
∑

j

C jU j +
∑

d

∑
c

Rcd Ecd +
∑

j

∑
i∈Sj

Li j Xi j

∑
i∈Sj

Xi j + U j = 1 ∀ j (5.1)

∑
j

∑
i∈Sj

α
j
is Xi j ≤ 1 ∀ s (5.2)
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j

∑
i∈Sj

δ
i j
cd Xi j − Ecd ≤ Acd ∀c, d (5.3)

Xi j , U j ∈ {0, 1}, Ecd ≥ 0

Constraint (5.1) is an assignment constraint ensuring that each crew member is assigned no more

than one training schedule. Constraint (5.2) ensures a simulator slot is utilized by exactly one

training schedule, while constraint (5.3) forces trips to be dropped on days reserves are available.

The solution process can be described in brief as follows. First, the process identifies all

the training footprints and generates all possible legal recurrent-training schedules (using these

training footprints) during the Schedule Generation Phase. Since all crew positions cannot be

solved together, the algorithm uses a crew selection heuristic which creates subsets of crew

members based on different criteria (such as position, crew base) before the Iterative Optimization
Phase. During the Iterative Optimization Phase, the process iterates over these crew member

subsets, and assigns schedules to maximize pairing of student pilots while minimizing the need

for filler instructors. Filler instructors are needed when pilots cannot train in pairs (captain and

first officer). At each iteration preference is given to matching a crew member’s schedule to a

previously assigned crew member belonging to a complementary position.

Post optimization solution improvement heuristics primarily focus on improving simulator

utilization by combining schedules whenever a simulator slot is partially utilized by crew mem-

bers. Partial utilization of a simulator slot is typical for some training footprints, and leaves a

portion of the slot time open for other training events. The additional benefit is the reduction in

the need for filler instructors.

5.2. Computational experiments

Table 5 lists real operational problems tested using the RECTRN model within the iterative

optimization phase of the solution process described earlier. We solved these problem instances

using the iterative algorithmic procedure described by Sohoni (2002). Column (1), in Table 5,

identifies the problem and column (2) tabulates the number of crew bases. The number of

Table 5 Characteristics of the problem instances solved using the RECTRN model

(1) (2) (3) (4) (5)

Crews

# Grace # Due # Prior
# Simulators # Training

Name # Bases (slots) A B C A B C A B C FPs

Pr S 1 1 3 (268) 0 0 0 15 6 0 18 1 0 3

Pr S 2 1 3 (268) 0 0 0 15 6 0 18 1 0 3

Pr S 3 3 3 (192) 0 3 0 20 8 0 32 26 0 7

Pr S 4 2 1 (26) 3 1 0 9 2 0 7 4 0 4

Pr S 5 2 1 (123) 2 0 0 11 3 0 11 7 0 4

Pr S 6 1 1 (73) 0 2 0 2 11 0 13 18 0 4

Pr S 7 1 2 (107) 1 2 0 9 17 0 19 33 0 4

Pr B 1 3 4 (416) 0 10 4 6 6 7 16 13 15 12

Pr B 2 4 5 (366) 18 7 0 60 29 0 56 29 0 9

Pr B 3 6 7 (608) 20 15 0 117 120 0 134 148 0 27
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Table 6 Solution characteristics of the test problem instances solved using the RECTRN model. The loss
in reserve availability is effectively controlled

(1) (2) (3) (4) (5) (6) (7)

Reserve shortage
CPU % Simulator Training

Name # Reserve (seconds) utilized events 1D 2D 3D 4D Unassigned

Pr S 1 15 40 20 268 0 0 0 0 16

Pr S 2 20 39 20 268 0 0 3 0 16

Pr S 3 22 62 47 192 0 0 5 0 28

Pr S 4 30 10 100 26 0 0 0 0 10

Pr S 5 35 27 35 123 0 0 0 2 11

Pr S 6 40 12 42 73 0 0 0 0 13

Pr S 7 40 22 55 107 0 0 0 0 21

Pr B 1 60 325 17 416 0 0 0 0 17

Pr B 2 80 738 60 366 0 0 2 4 58

Pr B 3 80 794 67 608 0 0 1 3 249

simulator and ground-school locations are one for all problem instances. Column (3) shows the

number of simulators and simulators slots available while column (4) shows the number of crews

classified by their training status and position (captain, first officer, or second officer). Column

(5) shows the total number of unique training footprints for each problem.

We used ILOG CPLEX 7.0 (ILOG, 2000) to solve these specific MIP instances on an HP-

9000/200 server. Table 6 shows the solution characteristics using this algorithm. The maximum

run time was restricted to 1000 seconds for each sub grouping of pilots, thus ensuring run times are

within acceptable real time planning limits. The restricted problem has typically less than 80,000

columns per iteration. In most cases the gap between the LP objective value and IP objective value

for this restricted problem was less than 0.5%. Column (2) shows the number of reserve crews

available to cover dropped trips and column (3) shows the CPU time in seconds for an entire

run that includes all the optimization iterations. Column (4) shows the percentage of simulators

utilized after recurrent-training scheduling is completed. Simulator utilization is not 100% in

most cases since the remaining capacity is leased out or used for initial training. Furthermore,

the restrictions on the number of positions per base also affects simulator utilization. Column

(5) shows the total number of simulator-training-events schedules, which in turn determines the

number instructors required, while column (6) shows the number of one, two, three and four

day trips remaining uncovered after recurrent-training is completed (based on a certain reserve

availability profile). Column (7) shows the number of crew members remaining unassigned at

the end of the scheduling process. Crew members remain unassigned primarily due to capacity

restrictions. In almost all cases, the reserve constraints effectively control the number of trips left

uncovered. The number of reserve patterns for problems Pr S 1 through Pr S 7 ranged between

10 and 40. Problems Pr B 1 through Pr B 3 had 60 to 80 reserve patterns available. In most

instances the model was also able to control the length of the trips dropped, thus minimizing

conflict costs.

6. Conclusions

Reserve crew costs are a major portion of operating budgets for most major airlines and efficient

utilization of reserves is necessary to control overall crew costs while ensuring smooth daily
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operations. As seen by empirical test results, RESOPT effectively increases reserve availability.

Combined with a good model to estimate trips in open-time, RESOPT can also help control

reserve manpower, thus lowering long range manpower costs significantly. Even though it is

extremely difficult to estimate open-time reserve demand due to irregular operations, adding

a reserve set for known open-time trips (due to conflicts) to the aggregate needs for irregular

operations (computed using traditional methods) will result in a significant improvement in

reserve availability. The MAXCONF model needs to be improved further to reflect an appropriate

objective function.

As shown in Section 4.6.1, different reserve patterns result in different reserve coverage.

While the number of available legal reserve patterns may vary significantly across the types, the

effect of using these reserve patterns may not be very significant. Additional steps to reduce trips

in open-time (Section 5.1) help in further increasing reserve crew availability and utilization.

A related area of interest is estimating the number for short call and long call reserves (a

definition based on the time allowed before reporting to duty on the day of operation) on each

day of operation. Simulating daily airline operations could forecast the number of expected

trip disruptions every hour and the number of short (and long) call reserves. Though such a

computation could be useful for recovery, the benefits and risks need to be carefully assessed.

References

Anbil, R., E. Gelman, B. Patty, and R. Tanga, “Recent advances in crew-pairing optimization at American airlines,”
Interfaces, 21, 62–74 (1991).

Anbil, R., R. Tanga and E. L. Johnson, “A global approach to crew-pairing optimization,” IBM System Journal,
31, 71–78 (1992).

Barnhart, C., A. Cohn, E. Johnson, D. Klabjan, G. Nemhauser, and P. Vance, “Airline crew scheduling” in R. W.
Hall (ed.), Handbook of Transportation Science, Kluwer Scientific Publishers, Boston, Massachusetts, pp.
493–521 (2003).

Campbell, K. W., R. B. Durfee, and G. S. Hines, “FedEx generates bidlines using simulated annealing,” Interfaces,
27, 1–16 (1997).

Christou, I., A. Zakarian, J. Liu, and H. Carter, “A two phase genetic algorithm for large scale bidline generation
problems,” Interfaces, 29, 51–65 (1999).

Day P. R., and D. M. Ryan, “Flight attendant rostering for short-haul airline operations,” Operations Research, 45,
649–661 (1997).

Dillon, J. E. and S. Kontogiorgis, “US airways optimizes the scheduling of reserve flight crews,” Interfaces, 29,
123–131 (1999).

Gaballa, A., “Planning callout reserve for aircraft delays,” Interfaces, 9, 78–86 (1979).
Gamache, M., F. Soumis, D. Villeneuve, J. Desrosiers, and E. Gelinas, “The preferential bidding system at air

Canada,” Transportation Science, 32, 246–255 (1998).
ILOG, “ILOG CPLEX 7.0 User’s Manual,” ILOG, France, 2000.
Jarrah, A. and J. Diamond, “The problem of generating crew bidlines,” Interfaces, 27, 49–64 (1997).
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