
European Journal of Operational Research 183 (2007) 591–607

www.elsevier.com/locate/ejor
Discrete Optimization

Optimal allocation and processing time decisions on
non-identical parallel CNC machines: �-constraint approach

Sinan Gurel, M. Selim Akturk *

Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

Received 16 February 2006; accepted 10 October 2006
Available online 13 December 2006
Abstract

When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the
scheduling performance. A well known example for such a case that this paper specifically deals with is the turning oper-
ation on a CNC machine. Manufacturing cost of a turning operation is a nonlinear convex function of its processing time.
In this paper, we deal with making optimal machine-job assignments and processing time decisions so as to minimize total
manufacturing cost while the makespan being upper bounded by a known value, denoted as �-constraint approach for a
bicriteria problem. We then give optimality properties for the resulting single criterion problem. We provide alternative
methods to compute cost lower bounds for partial schedules, which are used in developing an exact (branch and bound)
algorithm. For the cases where the exact algorithm is not efficient in terms of computation time, we present a recovering
beam search algorithm equipped with an improvement search procedure. In order to find improving search directions, the
improvement search algorithm uses the proposed cost bounding properties. Computational results show that our lower
bounding methods in branch and bound algorithm achieve a significant reduction in the search tree size that we need
to traverse. Also, our recovering beam search and improvement search heuristics achieve solutions within 1% of the opti-
mum on the average while they spent much less computational effort than the exact algorithm.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Controllable processing times; Manufacturing cost; Makespan; Non-identical parallel machines
1. Introduction

Most of the studies in the machine scheduling lit-
erature assume fixed processing times. However,
many industry applications allow us to control the
processing times. A well known example is the turn-
ing operation on CNC turning machines. On a CNC
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2006.10.024

* Corresponding author. Tel.: +90 312 290 1360; fax: +90 312
266 4054.

E-mail address: akturk@bilkent.edu.tr (M.S. Akturk).
turning machine, we can control the processing time
of an operation by setting the machining parameters
such as the cutting speed and feed rate. Decreasing
the processing time of a job usually requires incur-
ring extra costs. For a turning operation, decreasing
the processing time by increasing the cutting speed
and/or feed rate results in more wear on the tool
which implies increased tooling cost for the opera-
tion. In order to utilize the processing time control-
lability on a machine, we need to make appropriate
processing time decisions which take this time/cost
.

mailto:akturk@bilkent.edu.tr

592 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
trade-off into account. In this study, we try to han-
dle a situation where we need to make two decisions
at the same time, which are scheduling jobs on non-
identical parallel CNC turning machines and mak-
ing appropriate processing time decisions, so as to
minimize total manufacturing cost. In practice,
when the workload on a machine is high, the time
objective (makespan) becomes important and we
need to consider manufacturing cost and makespan
objectives at the same time. One of the methods to
solve bicriteria problems in the literature is repre-
senting one of the objectives as a constraint and
optimizing over the second objective. By this way,
we can search over the different values to generate
a set of discrete efficient points to approximate the
efficient frontier. Therefore, we consider the prob-
lem of minimizing total manufacturing cost objec-
tive for a given upper limit on the makespan
objective. This method known as the �-constraint
approach as discussed in T’kindt and Billaut
(2006) has been used widely in the literature,
because it is easy to use in an interactive algorithm.
Moreover, the decision maker can interactively
specify and modify the bounds and analyze the
influence of these modifications on the final solu-
tion. For the resulting single criterion problem, we
provide optimality properties that will be used in
an exact solution method. We also propose a beam
search method, and develop an improvement search
algorithm for the problem.

In the current literature on the loading and
scheduling problems of flexible manufacturing sys-
tems, the most popular performance measure is bal-
ancing the workload (or minimizing the makespan).
This is due to the fact that these systems require a
very high investment cost so that the managers
would like to fully utilize their capacity. Unfortu-
nately, the processing times are also assumed as
fixed in this literature, although the existing CNC
machine technology allows us to change the pro-
cessing times very quickly by just changing few lines
in the CNC programming code. This study consid-
ers both the makespan and total manufacturing cost
objectives at the same time for a flexible machining
environment and gives several methods to find effi-
cient solutions.

Trade-offs between cutting parameters and man-
ufacturing cost or surface quality of a turning oper-
ation have been studied for a long time in the
literature. Hitomi (1979) included mathematical
models and solution methods for different objectives
of machine parameter selection problem for the
turning operation. Lamond and Sodhi (1997) con-
sidered the cutting speed selection and tool loading
decisions on a single cutting machine so as to mini-
mize total processing time. Sodhi et al. (2001) con-
sidered determining the optimal processing speeds,
tool loading and part allocations on several flexible
machines with finite capacity tool magazines where
the objective is to minimize the makespan. Kayan
and Akturk (2005) recently provided a mechanism
to determine upper and lower bounds for the pro-
cessing time of a turning operation. They also
showed that manufacturing cost of a turning opera-
tion can be expressed as a function of its processing
time. In this study, we consider non-identical paral-
lel CNC turning machines on which we will deter-
mine the optimum processing times (equivalently,
machining parameters) that will minimize the total
manufacturing cost (F) subject to a makespan Cmax

constraint.
The pioneering study initiating the controllable

processing times in scheduling is by Vickson
(1980). He considered the total processing cost
and total weighted completion time on a single
machine. Karabati and Kouvelis (1997) discuss
simultaneous scheduling and optimal processing
time decision problem for a multi-product, deter-
ministic flow line operated under a cyclic scheduling
approach. They provide a solution method for the
processing time decision subproblem first and then
develop an iterative procedure to solve both prob-
lems at the same time. Controllable processing time
issue has been receiving increasing attention in
recent studies in the scheduling literature. They usu-
ally deal with two objectives at the same time: min-
imizing processing cost and a scheduling objective.
Hoogeveen (2005) includes a recent review of those
studies that consider controllable processing times
in multi-objective scheduling. A well known paper
that deals with processing cost and makespan objec-
tives at the same time on non-identical parallel
machines is by Trick (1994). He considered control-
lable processing times where each job has a linear
processing cost function. He considered the problem
of minimizing total processing cost subject to make-
span (capacity) constraints, and showed the NP-
hardness of the problem. In this study, an important
difference is that we now have a nonlinear convex
manufacturing cost function for each job. More-
over, we propose a branch and bound (B&B) algo-
rithm for the problem. We then give a beam
search algorithm which can be implemented for
the instances where the B&B algorithm is not

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 593
computationally efficient. We also propose an
improvement search algorithm which can be used
to improve any given feasible schedule for the
problem.

For the identical parallel machines case, Jansen
and Mastrolilli (2004) considered controllable pro-
cessing times and gave polynomial time approxima-
tion schemes for the problems of minimizing sum of
processing cost and makespan, minimizing process-
ing cost subject to makespan constraint and mini-
mizing makespan subject to processing cost
constraint. They also provided exact algorithms
for the preemptive versions. Mastrolilli (2003) con-
sidered the problem of minimizing maximum flow
time subject to processing cost constraint on identi-
cal parallel machines with release dates given for
each job. He showed that preemptive case is polyno-
mially solvable but non-preemptive case is NP-hard.
Our results that for the non-identical machine prob-
lem also apply for the identical machine problems.

In the next section, we give the problem defini-
tion. In Section 3, we define the single machine sub-
problem and give a solution method for the
problem. In Section 4, we prove cost lower bounds
for the partial schedules which we will employ in
our exact and beam search algorithms. Section 5
discusses a heuristic method which constructs a
starting solution for the B&B algorithm. We give
the B&B algorithm in Section 6. Then, in Section
7, we discuss the beam search algorithm for the
problem. We proposed an improvement search heu-
ristic in Section 8. In Section 9, we provide a recov-
ering procedure that improves the beam search
algorithm. We computationally test all these meth-
ods in Section 10 and finally give concluding
remarks in Section 11.

2. Problem definition

The notation used throughout the paper is as
follows:

Parameters

J set of jobs to be processed
fjm(pjm) manufacturing cost function of processing

time for job j on machine m

pl
jm processing time lower bound for job j on

machine m

pu
jm processing time level at which fjm(pjm) takes

its minimum value
Cm operating cost for CNC turning machine m

($/minute)
Hm maximum applicable cutting power by
CNC turning machine m (hp)

Tj, ej tooling cost multiplier and exponent for job
j

Decision variables

pjm processing time of job j on machine m

Xjm decision variable, that controls if job j is as-
signed to machine m

In set J, we have N jobs to be processed. Each job
corresponds to a metal cutting (turning) operation
that will be performed by a given cutting tool on
one of the M CNC turning machines. Each job is
different in terms of its length and diameter, depth
of cut, maximum allowable surface roughness, and
its cutting tool type. Also, each machine is different
in terms of its maximum applicable cutting power
Hm, and its unit operating cost, Cm ($/minute). Each
job must be performed on a single machine without
preemption and each machine can perform one job
at a time. We also assume that setup and tool
change times are negligible. The most commonly
used manufacturing cost function for a turning
operation is the sum of operating cost and tooling
cost. Operating cost of job j on machine m is the
cost of running the machine for its duration pjm

and can be expressed as Cm · pjm. Tool usage for a
turning operation can be calculated by the ratio of
its processing time to its Taylor’s tool life formula.
Tool cost for turning operation can be calculated
by the cost of the tool used times tool usage of the
operation. Kayan and Akturk (2005) recently
showed that manufacturing cost of a turning opera-
tion can be expressed as a function of processing
time as follows:

fjmðpjmÞ ¼ Cm � pjm þ T j � ðpjmÞ
ej :

In this paper, we will be using this form of the man-
ufacturing cost function. Since each job has different
manufacturing properties and each machine has a
different unit operating cost Cm, manufacturing cost
function fjm is different for each job on each machine.
Kayan and Akturk (2005) showed that fjm is mini-
mized at a processing time level pu

jm. Since fjm is a
convex function, it is increasing for pjm > pu

jm. Then,
we take pu

jm as an upper bound on pjm since both the
manufacturing cost of job j and the makespan for
machine m (since it is a regular scheduling measure)
increase for pjm > pu

jm. Furthermore, there exists a
processing time lower bound pl

jm which is determined
by the manufacturing properties of job j and the

594 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
maximum applicable cutting power of machine m,
therefore pl

jm is also different for each job on each
machine.

The problem is to schedule N jobs on M
machines and find the optimum processing time of
each job so as to minimize total manufacturing cost
(F) under the constraint that the makespan (Cmax)
of the schedule being upper bounded by a known
value of K. The technique used is the �-constraint
approach and is written in the c field of the ajbjc
scheduling notation as �ðF =CmaxÞ. Therefore, our
bicriteria problem is presented as Rmjcontrj�ðF =
CmaxÞ and can be formulated as follows:

min F :
X

j

X
m

X jm � fjmðpjmÞ

s:t: :
X

j

X jm � pjm 6 K 8m; ð1Þ
X

m

X jm ¼ 1 8j; ð2Þ

pl
jm 6 pjm 6 pu

jm 8j;m; ð3Þ
X jm 2 f0; 1g 8j;m: ð4Þ

In the mixed integer nonlinear programming
(MINLP) model above, the objective function is
the total manufacturing cost of the jobs, (F). Con-
straint set (1) guarantees that the makespan for each
machine is less than or equal to K so that the
Cmax 6 K for the schedule. Constraint set (2) forces
each job to be assigned to a machine. Constraint set
(3) applies the processing time lower and upper
bounds for each job. The objective function is
non-convex due to the existing (Xjmfjm(pjm)) terms.
Moreover, due to the bilinear terms (Xjmpjm) in the
constraint set (1), the feasible space of the problem
is also non-convex, so it is a non-convex MINLP
model. The well known Outer Approximation and
Generalized Benders Decomposition algorithms
for MINLP problems are only valid under the con-
vex objective function and convex feasible space
assumptions (Floudas, 1995). The non-convexities
constitute the major difficulty in finding the global
optimal solutions in MINLP problems and non-
convex MINLP problems receive increasing atten-
tion in nonlinear optimization theory (Kesavan
et al., 2004). In this paper, by exploiting the struc-
ture of our non-convex MINLP problem, we give
an exact algorithm and propose efficient heuristic
algorithms for the problem.

The formulation above shows that we have to
make two types of decisions to solve the problem,
the first one is machine/job allocation decisions
and the second one is processing time decisions.
For a given machine/job allocation, we can find
the optimal processing times by solving the single
machine manufacturing cost minimization problem
subject to the makespan constraint for each
machine. This is a subproblem of our original prob-
lem and we denote it as Pm where m stands for
machine m. In the next section we give a solution
method for Pm.

3. Single machine subproblem (Pm)

In Pm, we find the optimal processing times for
the set of jobs assigned to machine m such that total
manufacturing cost is minimized and the makespan
for the machine does not exceed K. The problem of
finding the optimal processing times on a single
machine under a makespan constraint has been
studied in the literature. The problem for the case
of linear decreasing cost functions is shown to be
polynomially solvable by Van Wassenhove and
Baker (1982). This result was extended to the case
of piecewise linear cost functions by Hoogeveen
and Woeginger (2002). Since we have a nonlinear
convex cost function, we propose an optimality
property and a new algorithm to solve this problem.

Assuming that Jm is the set of jobs assigned to
machine m, the single machine problem for machine
m can be formulated as follows:

ðP mÞ min
X
j2Jm

fjmðpjmÞ

s:t: :
X
j2Jm

pjm 6 K; ð5Þ

pl
jm 6 pjm 6 pu

jm 8j 2 J m: ð6Þ

In Lemma 1, we give a sufficient optimality prop-
erty for Pm. This property is very important since it
states the relationships between processing times of
jobs on the same machine in an optimal solution.

Lemma 1 (Optimality property for Pm). In an

optimal solution to the single machine problem Pm,

let pH be the optimal processing times vector, and
J 1

m ¼ fj : pH

jm > pl
jmg and J2

m ¼ fj : pH

jm ¼ pl
jmg where

Jm ¼ J1
m [J 2

m. Then the following conditions holds:
(i) ðofjm=opjmÞðpH

jmÞ ¼ k for j 2 J 1
m.

(ii) ðofjm=opjmÞðpH

jmÞP k for j 2 J 2
m.
Proof of Lemma 1. Since makespan is a regular
scheduling measure, increasing the completion time
of any job will not improve the makespan value.

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 595
Consequently, any processing time value greater
than pu

jm will lead to an inferior solution because
both objectives will get worse. Therefore, we can
replace pl

jm 6 pjm 6 pu
jm in constraint set (6) with

pjm P pl
jm. Next, we assume that there exists at least

one job j on machine m such that pjm > pl
jm, then the

optimal processing times vector p% is a regular
point. Such a point must satisfy the Karush–
Kuhn–Tucker (KKT) conditions. Then the
Lagrangian function for a processing time vector p

is as follows:

Lðp; k; lÞ ¼
X
j2Jm

fjmðpjmÞ � k K �
X
j2Jm

pjm

 !

þ
X
j2Jm

ljðpl
jm � pjmÞ:

At the optimal solution p%, $p(Lp,k,l) = 0 must be
satisfied, then for each j 2 Jm, the following equa-
tion must hold:

ðofjm=opjmÞðpH

jmÞ � k� lj ¼ 0;

where k 6 0 and lj P 0 for each j 2 Jm. If j 2 J 1
m,

then lj = 0, so ðofjm=opjmÞðpH

jmÞ ¼ k which proves
part (i) of the lemma. If j 2 J 2

m, then ðofjm=opjmÞ
ðpH

jmÞ ¼ kþ lj. Since lj P 0, ðofjm=opjmÞðpH

jmÞP k
holds, which proves part (ii) of the lemma. The only
case that J 1

m ¼ ; holds for an optimal solution is the
case in which K ¼

P
j2Jm

pl
jm. Then, the optimal solu-

tion is pH

jm ¼ pl
jm8j 2 J m which falls into the case de-

scribed in part (ii) of the lemma. h

The expression ðofjm=opjmÞðpH

jmÞ denotes the
derivative of the manufacturing cost function fjm

with respect to pjm at the point pH

jm. The value k in
Lemma 1 gives us the change in the optimal manu-
facturing cost (k · D), if K is increased by a suffi-
ciently small amount D. Property in Lemma 1
defines a local optimal solution to the subproblem
(Pm), so that we cannot improve the manufacturing
cost by changing the processing times of the jobs,
i.e., no improving feasible direction exists. Since
the objective function of Pm is a nonlinear convex
function and the feasible region is a convex set, a
local optimal solution is globally optimal, so that
property in Lemma 1 is actually a sufficient optimal-
ity property. We know that k 6 0 always holds
because fjm(pjm) is non-increasing in the interval
[pl

jm; p
u
jm] for all j and m.

An immediate extension of this property for Pm

to non-identical parallel machines case is as follows:
Corollary 1. For the Rmjcontrj�ðF =CmaxÞ problem, an

optimal solution must satisfy the property in Lemma 1
for each machine, individually.

For the non-identical parallel machines problem,
property in Lemma 1 must hold for each machine
m individually so we need to solve the subproblem
Pm for each machine. The optimality property in
Lemma 1 allows us to solve the problem Pm. How-
ever, since each job may use a different tool type we
may have different ej’s for each job. Then, it is not
possible to derive a closed form expression to deter-
mine the optimal processing time pH

jm. Therefore, in
order to solve the problem we need to employ a line
search algorithm, which will search over the
Lagrangian dual variable of the makespan con-
straint, k. According to Lemma 1, for each value
of k we can determine a corresponding processing
time for each job and a corresponding makespan le-
vel. Then, given a makespan level K, we can search
over possible values of k to achieve the makespan
level K and corresponding optimal processing times.

Pm algorithm:

Step 1: Set the upper bound for k, ku = 0.
Step 2: Set the lower bound for k, kl ¼ minjfðofjm=

opjmÞðpl
jmÞg.

Step 3: Calculate corresponding makespan levels
Ku ¼

P
j2Jm

pu
jm and K l ¼

P
j2Jm

pl
jm.

Step 4: If Kl > K, then the problem is infeasible.

Else if Ku

6 K, then pH

jm ¼ pu
jm for all j 2 Jm.

Else, apply the bisection method (Bazaraa
et al., 1993) over all possible values of k in
[kl,ku] in order to find a solution which has a
makespan level within �-neighborhood of K.
Pm algorithm is pseudo-polynomial since it
applies the bisection method. We will use Pm algo-
rithm in the B&B algorithm, beam search, and
improvement search heuristics. In the next section,
we will prove useful properties on cost lower bounds
for partial schedules. Optimality property in
Lemma 1 will also be useful for proving these
properties.

4. Cost lower bounds for a partial schedule

In a partial schedule, denoted as Sp, a subset of
jobs (Jp) is assigned to machines, but the remaining
jobs are not yet assigned. For Sp, we denote the set
of jobs assigned to machine m as J p

m and assume that
optimal pjm decisions were made by solving the Pm

596 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
for the currently scheduled jobs on machine m. Con-
sidering an arbitrary Sp, we will prove lower bounds
for the manufacturing costs of complete schedules
achievable by adding the unscheduled jobs to Sp.
We assume that when we add an unscheduled job
to Sp, processing times of previously scheduled jobs
may change, but the machine/job assignments in Sp

stay the same. Since the processing time decisions
for the jobs in Jp were made previously by solving
the subproblem Pm for each machine m, we have
at hand the optimal dual price km for each machine
m. When we add an unscheduled job j to a machine
m of the partial schedule Sp, it is sure that the new
schedule will have a higher manufacturing cost.
Assume that adding an unscheduled job j to
machine m does not violate the makespan constraint
(1), i.e.,

P
i2Jpm

pl
im þ pl

jm 6 K. Then, we give a lower
bound for the cost increase that will occur by add-
ing a single job j to a machine m of Sp in Lemma 2.

Lemma 2 (Cost lower bound for adding job j to
machine m (lbjm)). A lower bound, lbjm, on the cost

change that occurs by adding job j to machine m can

be found as follows:

lbjm ¼ fjmðpub
jmÞ � km � pub

jm;

where pub
jm ¼ maxðpl

jm; ðofjm=opjmÞ
�1ðkmÞÞ.

Proof. Suppose that we first set the processing time
of job j to pub

jm ¼ maxðpl
jm; ðofjm=opjmÞ

�1ðkmÞÞ and
then add the job to machine m. pub

jm is the processing
time that satisfies the optimality property (Lemma
1) for machine m. It is obvious that optimal process-
ing time pH

jm, to be achieved after solving Pm, cannot
be higher than pub

jm, therefore we will definitely incur
an additional cost of at least fjmðpub

jmÞ. The new sche-
dule on machine m may be infeasible since the
makespan of the jobs on machine m,P

i2Jp
m
pim þ pub

jm, may exceed K. In such a case, the
jobs on machine m must be compressed to make
the schedule feasible. We will estimate the cost of
compressing the jobs on machine m to K. The mar-
ginal cost of decreasing the makespan of the sche-
dule is �km and we need to compress the jobs by
pub

jm. Then, the second term is �km � pub
jm which is a

lower bound on the compression cost to be
incurred. Then, the additional cost of the new sche-
dule achieved will be at least lbjm. h

Lemma 2 gives us a lower bound for the cost of
adding an unscheduled job to a specified machine.
We want to determine a cost change lower bound
for adding all unscheduled jobs to Sp. By using
the lbjm values for j 2 JnJp, we can formulate an
integer program (IP) that gives us a lower bound
on the manufacturing cost increase due to adding
all unscheduled jobs in JnJp to Sp. A lower bound
for the cost increase to be caused by adding all
unscheduled jobs, or equivalently forming a com-
plete schedule, can be found by solving the follow-
ing integer program:

ðIPÞ min
X

j2JnJ p

XM

m¼1

X jmlbjm

s:t: :
X

j2JnJp

X jmpl
jm 6 K �

X
j2Jpm

pl
jm 8m; ð7Þ

XM

m¼1

X jm ¼ 1 j 2 J n J p; ð8Þ

X jm 2 f0; 1g j 2 J n J p and 8m: ð9Þ

In the IP model above, the objective function is the
sum of the cost change lower bounds (lbjm) for the
possible assignments of unscheduled jobs to the ma-
chines. Constraint set (7) is the makespan constraint
that guarantees that sum of the processing time low-
er bounds of jobs assigned to a machine does not ex-
ceed K. Constraint set (8) assigns each unscheduled
job to a machine. Finally, there exists binary con-
straints (9) for the decision variable Xjm. In the fol-
lowing lemma, we prove that the IP model gives a
lower bound for Sp.

Lemma 3 (LBIP). For a partial schedule Sp, an

optimal solution of the IP gives a lower bound for

the cost increase in order to form a complete schedule.
Proof. As discussed in Lemma 2, lbjm gives a cost
increase lower bound of adding job j to machine
m of Sp. The IP model looks for a feasible
machine/unscheduled job assignment that gives the
minimum sum of lbjm’s, given that each unscheduled
job is assigned to a machine and makespan con-
straint is satisfied for each machine. A complete
schedule achievable from Sp will obviously have
one of the feasible machine/job assignments of the
IP model. Then, forming any complete schedule will
bring more cost than the optimal value of the IP
model. h

We denote the lower bound found by solving the
IP model as LBIP. If an IP for Sp turns out to be
infeasible, this means no complete schedule can be
achieved from Sp. Next property gives the computa-
tional complexity of the IP problem.

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 597
Lemma 4 (NP-hardness). Solving the IP model is

NP-hard.

Proof. As our IP model is looking for an optimal
machine/job assignment subject to makespan con-
straints, it is a Generalized Assignment Problem
(GAP) model. Then, finding a cost increase lower
bound by solving IP is NP-hard. h

Since we will need to find a cost increase lower
bound for each partial schedule (node) in our
B&B algorithm, solving an NP-hard problem for
each node, of course, may not be efficient in terms
of computation time. Therefore, we propose two
other practical methods. The first one is to solve
the LP relaxation of the IP model. The following
lemma is obvious:

Lemma 5 (LBLP). An optimal solution of the LP
relaxation of IP gives a cost increase lower bound for

Sp.

A lower bound (LBLP) to be found by the LP relax-
ation is obviously smaller than LBIP. However, it re-
quires much less computation time which is critical
for our B&B algorithm. Another approach to find a
lower bound for Sp would be relaxing the makespan
constraint (7) of IP. In such a case we still get a low-
er bound for the cost increase, which is denoted as
LBR, and given below:

Lemma 6 (LBR). A lower bound for the cost increase

required to form a complete schedule from Sp is given

by: LBR ¼
P

j2JnJp minmlbjm, where lbjm is the cost

increase lower bound of adding job j to machine m of

Sp as defined in Lemma 2.

Proof. The lower bound on the additional cost to
be incurred by adding a job j to Sp (without know-
ing the machine to which it will be assigned) can be
found by minm lbjm. When we have multiple
unscheduled jobs, we can find an overall lower
bound by summing the corresponding lower bounds
for all unscheduled jobs. h

The lower bound LBR assumes that each job can
be assigned to the machine that gives the best cost
change lower bound for it regardless of the make-
span. Obviously, such a machine/job assignment
may be infeasible due to constraint set (7), but com-
puting LBR is much more simpler than LBIP or
LBLP. Between three given lower bounding meth-
ods, it is easy to see the relationship given below:

Lemma 7. LBR 6 LBLP 6 LBIP.
Computational requirements will also have the
same relationship. In order to achieve a better lower
bound we need to solve a harder problem. In this
section, we proposed three methods to find a cost
increase lower bound for an arbitrary partial sche-
dule Sp. In the next section, we describe a construc-
tion heuristic to find an initial solution for the B&B
algorithm.
5. Initial solution

In order to find an initial solution for the prob-
lem, we propose a heuristic algorithm denoted as
IS. This initial solution will serve as an upper
bounding solution for our B&B algorithm. The IS
algorithm starts with a list of jobs where jobs were
ordered in ascending order of their minimum cost
(minmfjmðpu

jmÞ). Then, starting with the first job in
the list and all machines being empty at the begin-
ning, in each iteration, the algorithm adds a new
job to the schedule. For each job, the algorithm first
selects a suitable machine which gives the minimum
cost increase lower bound as discussed in Lemma 2,
and then adds the job to that machine by solving the
subproblem Pm for the machine.

IS algorithm
Step 1: List the jobs in ascending order of their

minmfjmðpu
jmÞ.

Step 2: Starting from the first job in the list, for
each job do Steps 3 to 5.

Step 3: Calculate lbjm for each machine m, and
choose the best machine: m 0 = argminmlbjm.

Step 4: Check the feasibility of assigning job j to
machine m 0. If it is not feasible, choose
the next best machine and update m 0.
Repeat this until finding a suitable machine
or finding out that no machine is feasible. If
no feasible machine exists, then stop.

Step 5: Assign job j to machine m 0 and determine
the optimal processing times by solving
the single machine subproblem Pm for
machine m 0.

IS algorithm schedules the minimum cost job
first, so it is a greedy approach in a sense. At each
iteration, a new job is scheduled on the machine
which gives the minimum cost increase lower bound
given in Lemma 2. IS algorithm either ends with a
feasible schedule for the problem or fails to find a
feasible schedule and stops. The algorithm performs

598 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
at most N · M iterations. In the next section, we will
give the B&B algorithm.

6. B&B algorithm

The major difficulty in designing a B&B algo-
rithm for a non-convex MINLP problem is comput-
ing a lower bound at a node of a B&B tree. As
discussed in Kesavan et al. (2004), in few studies
that exist in the area the main approach is con-
structing the convex hull of the non-convex feasible
region and convex envelope of the non-convex
objective function, and solving the resulting convex
MINLP model to achieve a lower bound. Differ-
ently, in this paper we used the properties of partial
solutions and proposed three lower bounding meth-
ods that are easy to compute and implement in
practice. In this section, we first explain the B&B
search tree. Then, we discuss the node elimination
rules. We next give a step-by-step description of
the algorithm.

6.1. Search tree

At the root node of the search tree at level 0, all
jobs are unscheduled. Each node in the search tree
corresponds to an assignment where the jobs in a
subset of J are assigned to the machines. At each
level of the search tree, the B&B algorithm assigns
an unscheduled job. Then, a node at level k corre-
sponds to a partial schedule with k jobs being
assigned to the machines and similarly a node at
level N corresponds to a complete schedule where
all jobs in J are scheduled.

The algorithm uses a job list (j1, . . . , jN) to assign
job jk in the kth level of the tree. The root node has
M child nodes: one distinct node for scheduling job
j1 to each machine m for m = 1, . . . ,M. Then, each
node at level 1 corresponds to an assignment where
job j1 is assigned on a different machine. Similarly, a
node at level k corresponds to a partial schedule
with jobs (j1, . . . , jk) assigned on the machines. Each
node at level k < N has at most M child nodes so
that there is one child node for the assignment of
job jk+1 to machine m, for m = 1, . . . ,M.

For each node, we find the optimal cost and the
optimal processing time decisions for each machine
by solving the subproblem Pm for the given
machine/job assignments of the partial schedule.
This will allow us to use the lower bounding meth-
ods discussed in Lemmas 2–6 so that we will be able
to reduce the tree size by fathoming some parts of
the tree. Obviously, by traversing the search tree
defined above, we can find an optimal solution for
the problem.
6.2. Node elimination

Having a search tree that enumerates all possible
solutions for the problem and finds an optimal sche-
dule, the question is how to reduce the size of the
search tree by discarding nodes. There are two ways
of eliminating nodes from our B&B tree. One is by
feasibility and the other is by optimality. As dis-
cussed above, we generate a child node from a par-
ent node by adding a new job j to a machine m of
the partial schedule represented by the parent node.
When opening a child node, we first check if it is fea-
sible to add job j to machine m. If the child node is
not feasible (

P
i2Jm

pl
im þ pl

jm > K), we eliminate the
child node, so that ignore all subtree growing from
that child node.

If a child node turns out to be feasible, then we
solve the single machine subproblem Pm for machine
m and make optimal processing time decisions for
the partial schedule so that Lemma 1 is satisfied
for the jobs on machine m. After checking the feasi-
bility of the node and solving the subproblem for
machine m, the next step is to find a lower bound
for the new partial schedule. In Section 4, we derived
three different ways of calculating manufacturing
cost increase lower bounds for achieving complete
schedules from a given partial schedule. We can
employ one of those methods (LBIP,LBLP,LBR) to
find a cost increase lower bound. The cost increase
lower bound of the node plus the cost of the partial
schedule of the node itself gives us a lower bound for
a complete schedule achievable from the node. If the
lower bound of a node is higher than or equal to the
cost upper bound, then the node is eliminated due to
optimality.

Another alternative for eliminating nodes by fea-
sibility is detecting the infeasibility of a partial sche-
dule when finding its lower bound by using LBIP or
LBLP. When solving the IP model (or its LP relaxa-
tion) for finding LBIP (LBLP), the solver may find
out that the model is infeasible. This shows that
no feasible complete schedule can be achieved from
the considered partial schedule. Then, we eliminate
the node by feasibility. Having described the search
tree and the ways of eliminating nodes from the tree
we give a stepwise presentation of our B&B algo-
rithm below:

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 599
B&B algorithm
Step 1: Find an initial upper bounding solution by

using the IS algorithm. Set upper bound-
ing cost UBc to the cost of the solution
found by IS. If IS cannot find a feasible
solution, set UBc =1.

Step 2: Form a list of jobs (j1, . . . , jN) in descend-
ing order of (maxmpl

jm).
Step 3: Start with the root node as the parent

node, set the level of the parent node levelp
to 0.

Step 4: For i = 1, . . . ,m, do the following:
Step 4.1: Generate child node i of the parent node

by adding job jlevelpþ1 to machine i.

Step 4.2: Check the feasibility of child node i. If
child node i is not feasible, eliminate it.

Step 4.3: Else, solve the subproblem Pm for machine
i and calculate cost (F p) of the partial
schedule.

Step 4.4: If child node i is a complete schedule, i.e.
levelp + 1 = N, then, if F p < UBc, set
UB c = F p. Else, apply Steps 4.5 and 4.6.

Step 4.5: Find the cost increase lower bound LBp. If
it turns out that no complete feasible sche-
dule can be achieved from child node i,
then eliminate it. Else, calculate lower
bound for child node i by LBC = F p +
LB p.

Step 4.6: If LBc P UBc eliminate child node i.
Step 5: Find the next parent node and update

levelp and go to Step 4. If no parent node
is available, then stop.
In the B&B algorithm, Step 1 finds an initial sche-
dule to be an upper bounding solution by using the
IS algorithm. In Step 2, jobs are ordered to form a
list which determines which job to be scheduled at
what level of the B&B search tree. Step 3 sets the root
node as the first parent node to be considered in the
following steps. Step 4 and its sub-steps branches on
the parent node and generates its child nodes. At
each child node, job jlevelpþ1 is added to a different
machine of the partial schedule represented by the
parent node. Step 4.2 checks the feasibility of adding
job jlevelpþ1 to machine i and if not feasible eliminates
the node. If it turns out to be feasible, in Step 4.3,
single machine subproblem Pm is solved for machine
i. If child node i represents a complete schedule and
if Fp < UBc, then the schedule on child node i is the
best solution found so far and the UBc value is
updated. If child node i represents a partial schedule,
a lower bound is calculated for the partial schedule
in Step 4.5. At this step, we may conclude that no
feasible complete solution can be achieved from this
partial schedule, then we eliminate this node. In Step
4.6, if the lower bound found in Step 4.5 is greater
than UBc, then we eliminate child node i. In Step
5, we either find a new parent node or stop.

In the B&B algorithm, we implemented a modi-
fied depth-first strategy. When we branch on a par-
ent node, we generate all its child nodes and out of
these child nodes we select the one with the mini-
mum lower bound as the new parent node and
branch on this node next. If the complete subtree
growing from the selected parent node is traversed,
we branch on the next best child node of its parent
node. This is a depth-first strategy supported with a
greedy node selection approach.

The B&B algorithm defined above either ends up
with an optimal solution or concludes that the
problem is infeasible. The performance of this
B&B algorithm is bounded by the computational
requirements. In the next section we propose a beam
search algorithm for the instances where applying
B&B is inefficient.

7. Beam search algorithm (BS)

Up to now we have described an exact algorithm
(B&B) for the problem. We have also proposed
lower bounding methods to reduce the tree size for
this algorithm. However, the problem is an NP-hard
problem and the size of the search tree for the B&B
algorithm increases exponentially as N and M

increase. For higher levels of N, M and K, we pro-
pose a beam search algorithm to find near optimal
solutions. Beam search is a fast B&B method which
keeps best b (beam width) nodes at a level of search
tree and eliminates the rest. Therefore, its running
time is polynomial in the problem size. A well
known beam search application on a scheduling
problem is by Ow and Morton (1988). They applied
beam search on single machine early/tardy problem.
The performance of a beam search method depends
on the quality of the method that the algorithm uses
to select the best nodes at a level of the tree. In our
BS algorithm, we will consider the same search tree
structure as our B&B algorithm. Therefore, each
node at a higher level than N will correspond to a
partial schedule and at each level a new job from
a list of jobs will be scheduled. As a rule to choose
the nodes to be saved, we will use the lower bound
LBLP. Each lower bounding method we defined in
Section 4, can be used as an evaluation method

600 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
which estimates the cost of complete schedule for a
given partial schedule. A stepwise description of the
beam search algorithm for the problem is below:

BS algorithm
Step 1: Form a list of jobs (j1, . . . , jN) in descend-

ing order of (maxmpl
jm).

Step 2: Start with the root node as the parent
node. Set the level of the parent node levelp
to 0.

Step 3: For each selected parent node and for
i = 1, . . . ,m, do Step 3.1 to 3.4:

Step 3.1: Generate child node i of the parent node
by adding job jlevelpþ1 to machine i.

Step 3.2: Check the feasibility of child node i. If
child node i is not feasible, eliminate it.

Step 3.3: Else, solve the subproblem Pm for machine
i and calculate cost of the partial schedule
Fp.

Step 3.4: If levelp < (N � 1), then find the cost
change lower bound LBp. If it turns out
that no complete feasible schedule can be
achieved from child node i, then eliminate
it. Else, calculate the lower bound for node
i by LBC = Fp + LBp.

Step 4: If all child nodes are eliminated due to fea-
sibility, then no feasible solution could be
found, stop.

Step 5: If levelp < (N � 1), then select best b child
nodes with smallest LBC values, set levelp =
levelp + 1 and go to Step 2.

Step 6: If levelp = (N � 1), then select the best
child node with minimum cost and stop.
If the problem is feasible, the BS algorithm either
cannot find a feasible solution (Step 4) or finds an
approximate optimal solution (Step 6). If the prob-
lem is infeasible, the BS algorithm cannot find a fea-
sible solution (Step 4). Using our search tree
structure that we proposed in Section 6 and our
lower bounding methods as an evaluation function,
the BS algorithm is a fast alternative for the cases
that the B&B algorithm fails to undertake. The time
complexity of the BS algorithm is O(mnb). In the
next section, we will propose improvement search
steps for the problem which can be applied to any
given schedule.
8. Improvement search heuristic (ISH)

We have given an exact algorithm (B&B) for the
problem and then proposed a beam search method
that runs in polynomial time. In this section, we
extend our discussion to an improvement search
algorithm. We will define an improvement search
heuristic which starts with an initial schedule and
improves the solution at each iteration to achieve
a local optimal solution.

Our improvement search heuristic starts with an
initial schedule which satisfies the optimality condi-
tion in Corollary 1 so that we assume the single
machine subproblem is solved for each machine.
We represent such a solution as a partition of the
jobs to the machines. We define two moves to
describe the neighborhood of a solution. The first
one is 1-move, which is to move a job j from its cur-
rent machine m1 to another machine m2. The other
one is 2-swap, which is to exchange job j1 on
machine m1 with another job j2 on machine m2.
Given a solution, we proved cost change lower
bound properties for the two moves we defined
above. Lemma 8 gives the cost change lower bound
for a 1-move:

Lemma 8 (Lower bound for a 1-move). Given a

schedule which satisfies the condition in Corollary 1,

assume that job j has a processing time pjm1
on

machine m1 and machines m1 and m2 have the dual

price values km1
and km2

, respectively. Then, a lower

bound for the cost change that will result by moving

job j from machine m1 to m2 is as below
LBðj : ðm1 ! m2ÞÞ

¼ km1
pjm1
� fjm1

ðpjm1
Þ þ fjm2

ðpub
jm2
Þ � km2

pub
jm2
;

where pub
jm2
¼ maxððofjm2

=opjm2
Þ�1ðkm2

Þ; pl
jm2
Þ.

Proof. Suppose that we first remove job j from
machine m1, the cost change lower bound for this
action is the first two terms of the lower bound
expression above. The first term is the cost of job j
on machine m1 and the second one is the lower
bound for cost change to occur by expanding the
processing times of the remaining jobs on the
machine. Suppose that we next add job j to machine
m2. The cost change lower bound for adding job j to
m2 can be calculated as discussed in Lemma 2. The
cost change lower bound for this action is third and
fourth terms of the lower bound expression. h

Lemma 8 can help us to decide to make a 1-move
or not. Since LB(D1-move) is a lower bound, if it is a
positive value for a particular 1-move, then it is sure
that the move will make the cost objective worse, so

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 601
we ignore the move since it is non-improving. Else,
if it is negative, then it promises a reduction in cost
but since it is a lower bound it does not guarantee a
reduction. Hence, we need to find out the actual
improvement. Next, we analyze the cost change
lower bound for 2-swap moves. Lemma 9 gives a
lower bound for the resulting cost change for this
move.

Lemma 9 (Lower bound for a 2-swap). Given a

schedule which satisfies the condition in Corollary 1,

assume that jobs j1 and j2 have processing times pj1m1

and pj2m2
and scheduled on machines m1 and m2,

respectively. Machines m1 and m2 have the dual prices

km1
and km2

, respectively. Then, a lower bound for the

cost change that will result by moving job j1 from

machine m1 to m2 and job j2 in opposite way is as
below

LBðj1 $ j2Þ
¼ km1

ðpj1m1
� pub

j2m1
Þ � fj1m1

ðpj1m1
Þ þ fj2m1

ðpub
j2m1
Þ

þ km2
ðpj2m2

� pub
j1m2
Þ � fj2m2

ðpj2m2
Þ þ fj1m2

ðpub
j1m2
Þ;

where pub
j1m2
¼ maxððofj1m2

=opj1m2
Þ�1ðkm2

Þ; pl
j1m2
Þ and

pub
j2m1
¼ maxððofj2m1

=opj2m1
Þ�1ðkm1

Þ; pl
j2m1
Þ:

Proof. The proof can be easily done by using
Lemma 8. h

If the cost change lower bound for a move is non-
negative, then it is sure that the move cannot
improve the cost. If it is negative, we call the move
as a ‘‘promising’’ move. A promising move may
improve the cost, but since we just have a negative
lower bound for the cost change, the real cost change
after implementing the move may still be positive.
Using this fact the proposed algorithm could only
evaluate the promising moves which will make it
computationally more efficient than a local search
algorithm that tries all possible moves. Moreover,
the lower bounds presented in Lemmas 8 and 9 will
guide any search algorithm to try the most promis-
ing move first, like a steepest descent algorithm in
some sense. Given an initial schedule, by calculating
the cost change lower bounds for all possible 1-
moves and 2-swaps, we can either conclude that
the schedule is locally optimal, which is the case
when all lower bounds are non-negative, or we can
try the moves which promise possible improvements
since they have negative cost change lower bounds.
By using these observations, we will propose an
improvement search heuristic for the problem.
The improvement search heuristic starts with an
initial schedule. First, the heuristic uses promising
1-moves to improve the initial schedule. To do this,
it generates all possible 1-moves for this schedule
and calculates the cost change lower bound for each
possible 1-move. The heuristic applies the most
promising move first and solves the single machine
subproblems for the affected machines. If an
improvement is achieved, new moves are generated
for the new schedule. If no improvement is achieved
by this move, the heuristic tries the next most prom-
ising move, until an improvement is achieved or no
promising move is left. When no improvement is
possible for the current schedule by using 1-moves,
the heuristic considers 2-swap moves. It tries to
improve the solution by 2-swap moves in the same
way as we did by 1-moves and stops when no
improvement is possible.

Improvement search heuristic (ISH):
Step 1: Take an initial schedule (S) and its cost is

F(S).
Step 2: Generate all 1-moves for S and calculate

LB(j : (m1! m2)) for each 1-move.
Step 3: If no promising moves exist, go to Step 5.

Else, find the most promising move.
Step 4: Apply the selected move on S and solve

the Pm subproblem for the affected
machines. The new solution is F(S 0).

Step 4.1: If the solution is improved, replace S with
S 0 and go to Step 2.

Step 4.2.: Else, find the next most promising move
and go to Step 4. If no promising move
is found go to Step 5.

Step 5: Generate all 2-swap moves for S and
calculate LB(j1 M j2) for each 2-swap
move.

Step 6: If no promising moves exist, terminate.
Else, find the most promising move and
go to Step 7.

Step 7: Apply the selected move on S and solve
the Pm subproblem for the affected
machines. The new solution is F(S 0).

Step 7.1: If the solution is improved replace S with
S 0 and go to Step 5.

Step 7.2: Else, find the next most promising move
and go to Step 7. If no promising 2-swap
move is found, terminate.

By using 2-swap moves defined for ISH, in the
next section we will extend the BS algorithm to a
recovering beam search algorithm.

602 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
9. Recovering beam search (RBS)

Recovering beam search method, as described in
detail by Della Croce et al. (2004), combines the
beam search idea with local search techniques to
improve the performance of a classical beam search
technique. The main idea in the recovering step is to
prevent the elimination of promising nodes (nodes
that could lead to optimal or near optimal solu-
tions) due to errors in the node evaluation step of
beam search algorithms by applying local search
techniques to achieve better partial solutions at each
level of the beam search algorithm. A recovering
beam search implementation for the single machine
total completion time problem with release dates is
given in Della Croce and T’kindt (2002).

In Step 3 of the proposed BS algorithm, we gen-
erate child nodes for a given level of the search tree.
Assuming that K child nodes generated at level l,
our recovering step is as follows:

Recovering procedure
Step 1: Sort the child nodes in non-decreasing

order of their LBC. Let nk be the kth best
node.

Step 2: Define the set of selected nodes, empty set
S = {}.

Step 3: Set k = 1. While (jSj < b) and (k < K) do
Step 3.1: Generate new partial schedules (nodes) by

swapping last added job jl+1 with each job
added to a different machine.

Step 3.2: If a node (nH

k) with smaller LBC is found,
and if nH

k 62 S then S ¼ S [fnH

k g. Else
S = S [{nk}.
We put this recovering procedure into Step 5 of
BS algorithm as below:

Step 5: If levelp < (N � 1), then apply Recovering
Procedure to select b nodes, set levelp =
levelp + 1 and go to Step 2.

The time complexity of the RBS algorithm is
O(mn2b). In the next section, we give the results of
our computational study.
10. Computational results

In this paper, we first developed an exact algo-
rithm (B&B) for the problem with three different
lower bounding methods. We next proposed a beam
search (BS) algorithm along with an improvement
search heuristic (ISH). We further extended BS to
a recovering beam search (RBS) algorithm. We
coded these algorithms in C language and compiled
with Gnu C compiler version 2.95.3. All codes were
run on the operating system Solaris 2.7 on a work-
station Sun HPC 4500 with 12 · 400 MHz UltraSP-
ARC CPU and 3GB memory. The B&B, BS and
RBS algorithms used the CPLEX 9.1 commercial
solver to compute the lower bounds LBLP and LBIP.
All reported computational times are in seconds.

We considered two experimental factors: number
of jobs (N = 10,15,20) and number of machines
(M = 2,3,4). For each experimental setting we took
5 replications. For each replication we generated
cutting specifications (diameter, length, depth of
cut and required surface roughness) of jobs ran-
domly. For each job we randomly used one of the
tool types out of ten types of cutting tools with dif-
ferent technical coefficients given in Kayan and
Akturk (2005). We randomly generated the cost of
each tool Ct from the uniform distribution
U � [5,10]. Ct determines the cost coefficient Tj with
other job and tool specific parameters as discussed
in Kayan and Akturk (2005). We used four types
of machines with the following Cm, Hm couples:
(0.3,5), (0.5,10), (0.7,15) and (0.9,20). The CNC
machines with higher horsepower, Hm, capabilities
can attain higher cutting speeds and feed rates (i.e.
lower processing times), but their initial investment
cost (and their operating cost) would be higher as
well. This way we can evaluate the impact of differ-
ent CNC machine technologies on the scheduling
decisions. In our computational runs, when
M = 2, we used first two machines described above
and when M = 3, we used first three machines.

Another very important factor for the problem is
the limit (K) on makespan objective of the schedule.
How to select a K value for a given problem setting
is a critical decision since selecting a very small K

value may cause all instances of a replication to be
infeasible. In order to see the effect of K, we solved
each replication of the problem for 5 different levels
of K. To find proper K values, we first solved the
makespan minimization problem for each replica-
tion for fixed processing times case where
pjm ¼ pl

jm for each j and m. This is a makespan min-
imization problem on unrelated machines and
known to be NP-hard, so we used a polynomial-
time algorithm by Davis and Jaffe (1981), which
was shown to have a worst case bound of
ð1þ

ffiffiffi
2
p
Þ
ffiffiffiffiffi
M
p

. This algorithm provides us a feasible
makespan level K which we denote as KDJ. We cal-

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 603
culated five different K levels by using the formula
K = k · KDJ where k = 0.6,0.8, 1,1.2,1.4. In the
computational study, we first solved randomly gen-
erated problems by using three different B&B algo-
rithms. Each B&B algorithm uses a different lower
bounding method that we proposed in Section 4.
The B&B algorithm either finds out that a problem
is infeasible or gives us an optimal solution. For the
cases that B&B found an optimal solution we solved
the problem by the BS and RBS algorithms which
use LBLP as a partial schedule evaluation tool. We
next tested ISH algorithm using 3 different starting
solutions provided by BS, RBS and IS algorithms.

A critical step in our B&B algorithm is deciding
the job order (Step 2), i.e. determining which job
to be added to a partial schedule next at a given
level of the search tree. We ordered the jobs in a
descending order of maxmpl

jm. This is intuitive
because as we schedule the jobs with higher process-
ing time lower bound at earlier stages of the B&B
tree, we catch infeasible schedules earlier and this
reduces the number of nodes to be opened and
decreases the computation time. In computational
study, we considered two other rules to order jobs
in Step 2 of B&B and took trial runs to compare dif-
ferent methods. One method is to order the jobs in
ascending order of minmfjmðpu

jmÞ as in the IS algo-
rithm, which allows us to schedule lower cost jobs
earlier in the B&B tree. We also considered
maxmfjmðpu

jmÞ, which allows us to schedule highest
minimum cost jobs earlier. We took trial runs for
N = 10 and M = 2 and 3. We give the average
results for CPU, number of opened nodes, number
Table 1
Trial results for job ordering rules for Step 2 of B&B

Job order CPU Opened
nodes

Eliminated
due to
feasibility

Eliminated by
lower bound

maxmpl
jm 0.20 1426 29,199 10,923

minmfjmðpu
jmÞ 1.85 16,056 21,941 3550

maxmfjmðpu
jmÞ 1.45 12,171 25,333 4043

Table 2
Eliminated and traversed tree sizes

LB type Eliminated by lower bound Eliminated due

Mean (%) Min (%) Max (%) Mean (%)

LBR 26 0 86.4 68.4
LBLP 28.8 0 87.2 66.5
LBIP 29.1 0 87.2 66.3
of eliminated nodes due to feasibility and number
of eliminated nodes by lower bound (optimality)
in Table 1. The results show that our selection of
maxmpl

jm order performs better than the other order-
ing rules both for the CPU requirement and for the
node elimination capability due to feasibility and
optimality.

We next discuss the performance of the B&B
algorithm with different lower bounding methods.
We consider the cases where a feasible solution is
available for the problem. We give the size of the
eliminated B&B tree and traversed nodes for differ-
ent lower bounding methods in Table 2. For a given
(N, M) instance, the maximal number of nodes to be
traversed in worst case in our B&B tree can be cal-
culated by (1 �MN+1)/(1 �M). For M = 4 and
N = 20, total number of nodes to be traversed
may reach 1,466,015,503,701. Similarly, when we
decide to fathom a node at level L, we save from
opening (1 �MN�L+1)/(1 �M) � 1 nodes which is
the number of nodes that would grow from the fath-
omed node at the worst case. We measured the
number of eliminated nodes due to bounds and fea-
sibility in terms of their percentages to the maximal
total number of nodes. The results in Table 2 show
that our lower bounds can reduce the tree size by
29% on the average. There are instances where this
reduction reaches to 87%. The feasibility effect
reduced the tree size by 66% on the average. The last
column of the table for traversed tree size shows
that we could solve the problems by just opening
4.6% of the nodes on the average. There are cases
solved by just traversing a negligible size of B&B
tree. We have shown in Section 4 in Lemma 7 that
for a given partial schedule (node) the following
relationship holds: LBIP P LBLP P LBR. We also
observe this relationship between the sizes of the
eliminated B&B trees by different lower bounding
methods in Table 2.

In Table 3, we present the CPU requirements of
different lower bounding methods in B&B algorithm
for different experimental settings. This table shows
that increasing N or M strongly affects the running
to feasibility Traversed

Min (%) Max (%) Mean (%) Min (%) Max (%)

0.4 100 5.6 0 43
0.4 100 4.7 0 38.4
0.4 100 4.6 0 38.2

Table 3
CPU requirements (in seconds) for different lower bounding methods

N LB type M = 2 M = 3 M = 4

Mean Min Max Mean Min Max Mean Min Max

10 LBR 0.08 0.02 0.16 0.26 0.01 0.59 1.18 0.08 2.30
LBLP 0.26 0.10 0.46 1.11 0.05 2.33 5.03 0.44 10.51
LBIP 0.32 0.14 0.52 1.42 0.05 2.89 6.11 0.25 10.6

15 LBR 2.06 0.20 5.81 21.3 0.26 80.6 241 0.99 1002
LBLP 4.88 0.69 12.7 65.4 1.21 268 662 3.67 3422
LBIP 5.99 1.74 13.5 90.7 0.28 314 927 2.90 4196

20 LBR 56.2 3.84 186 2443 33.2 7380 69,950 236 177,030
LBLP 112 7.93 382 4853 114 18,266 101,293 618 362,148
LBIP 129 22.2 386 7550 25.9 24,468 169,676 319 584,398

604 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
time of the B&B algorithm as expected. For the
considered N and M levels, LBR has the minimum
average running time. The second best alternative
is the LBLP in terms of the CPU time. An important
observation in Table 3 is that as N and M increase
the CPU time required by LBR approaches to the
CPU time required by LBLP, so we may expect to
see that LBLP will have shorter CPU times for larger
problem sizes. If we check the CPU time ratio LBR/
LBIP, we observe that as N is increased, perfor-
mance of the LBR gets closer to the performance
of LBIP, but as M is increased, we observe the oppo-
site. This is due to the fact that computing LBIP is
itself an NP-hard problem and requires much more
time when M is increased. Another observation in
Table 3 is that for each lower bounding method
we see big gaps between minimum and maximum
CPU times. This is because we solve each problem
for different K levels as discussed below.

Table 4 gives the average size of the eliminated
and traversed nodes and required CPU time for
N = 20 and M = 4 for different K levels, such that
K = k · KDJ where k = 0.6,0.8, 1,1.2,1.4. For exam-
ple, k = 0.6 corresponds to the case where K level is
1 and so on. We observe that as K is increased, the
size of the traversed tree increases since fewer num-
ber of nodes are eliminated due to the feasibility.
Hence, the CPU time required to solve the problem
Table 4
Eliminated and traversed nodes at different K levels for N = 20
and M = 4 by LBLP

K

level
Eliminated by
lower bound (%)

Eliminated by
feasibility (%)

Traversed
(%)

CPU

3 1.4 98.6% 0.0% 10,402
4 7.5% 92.5% 0.004% 93,921
5 18.7% 81.2% 0.014% 199,556
increases, too. We see that the CPU time require-
ment when K level is 5 is twenty times higher than
the CPU time requirement when K level is 3. This
shows that CPU requirement of the B&B algorithm
is strongly affected by K. Therefore, we can say that
the B&B algorithm is more efficient for smaller K’s
in terms of running time.

In Table 5, we give the solution quality results for
the proposed IS, BS and RBS algorithms. We use a
beam width b = 3 for BS and RBS. We define the
relative solution quality of an algorithm A, RA, as
the ratio of the difference between cost achieved
by A and the optimal cost achieved by B&B over
the optimal cost expressed in %. It is the percentage
deviation from the optimum. The average perfor-
mance of IS algorithm varies between 7.2% and
22.9%. BS algorithm achieves an average perfor-
mance between 1.8% and 7.9%. RBS algorithm
gives the best results with an average performance
between 0.1% and 1.4%. There are cases where BS
and RBS achieve the optimum. The worst perfor-
mance for RBS is 9.6% whereas it is 26.5% for BS.
We observe that including a recovering step in BS
algorithm significantly improved the solution qual-
ity. When we check the CPU time performance for
each heuristic, we see that all three methods are very
efficient. As an example, for the largest problem size
of the (20, 4) case, the average CPU time require-
ments were 0.28 and 0.71 CPU seconds for the BS
and RBS algorithms, respectively. We also observe
that the IS algorithm has negligible CPU time
requirements.

In Table 6, we give the solution quality results for
the ISH algorithm for three different starting solu-
tions provided by IS, BS and RBS. We represent
the deviation of ISH from the optimum as RA+ISH

where A stands for the algorithm of which is used

Table 5
Deviations from the optimum for IS, BS and RBS algorithms

N M RIS (%) RBS (%) RRBS (%)

Mean Min Max Mean Min Max Mean Min Max

10 2 11 0.6 43.1 1.8 0 11.5 0.1 0 0.7
3 22.6 2.8 45.7 4.8 0 24.6 0.6 0 3.9
4 22.9 6.1 40.6 2.1 0.1 11.9 1.4 0 9.6

15 2 7.4 0.4 24.5 3.7 0 21.5 0.4 0 2.6
3 18.4 8.7 27.8 5.4 0.1 16.9 0.5 0 2.6
4 15.4 10.0 22.3 5.0 0.4 23.5 0.8 0.1 3

20 2 7.2 0.1 21.5 5.0 0 19.9 0.4 0 1.6
3 14.3 4.6 28.7 7.9 0.5 26.5 0.9 0 4.3
4 17.2 8.5 28.9 5.3 0.6 17.4 1.1 0 5.6

Table 6
Deviations from the optimum for ISH algorithm

N M RIS+ISH (%) RBS+ISH (%) RRBS+ISH (%)

Mean Min Max Mean Min Max Mean Min Max

10 2 0.5 0 3.9 1.1 0 11.5 0.06 0 0.7
3 2.4 0 6.5 4.3 0 23.1 0.5 0 3.8
4 1.9 0 7.1 1.7 0 11.9 0.1 0 9.3

15 2 0.3 0 4.5 1.8 0 12.4 0.1 0 2.2
3 1.0 0 3.1 3.2 0 11.8 0.4 0 2.6
4 1.5 0 3.2 4.4 0 23.2 0.5 0 2.8

20 2 0.4 0 3.4 2.5 0 19.9 0.1 0 0.4
3 1.5 0 4.6 4.9 0.2 20.9 0.7 0 4.3
4 1.6 0 3.2 4.4 0.4 16.5 0.9 0 5.4

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 605
as a starting solution by the ISH algorithm. In com-
parison with the starting solutions, we observe that
the ISH achieves a significant improvement in all
three cases. When we compare the results given in
Table 5 with respect to Table 6, the average gap
between the IS algorithm and the optimum solution
was 22.9% (RIS) for the (10, 4) case in Table 5. After
implementing the ISH algorithm over the IS algo-
rithm, it was decreased to 1.9% (RIS+ISH) for the
(10, 4) case in Table 6. In all cases, the average
improvements over the starting solutions were sta-
tistically significant.
Table 7
Performances of beam search and improvement search heuristics at diff

K level RBS (%)

Mean Min Max Standard deviati

2 9 0 21.5 7
3 6.2 0 26.5 7
4 3 0 18.2 5
5 2.1 0 12.4 3
We next analyzed the performances of BS and
ISH algorithms for different K levels as reported in
Table 7. A very important observation is that solu-
tion quality of BS and ISH algorithms improve as K

is increased. Therefore, for the problem instances
where our B&B algorithm is not computationally
efficient, our BS and ISH algorithms can achieve
solutions more closer to the optimum. This is due
to the shape of the manufacturing cost function.
When K is increased, we deal with higher processing
time values where the manufacturing cost functions
are flatter.
erent K levels

RISH (%)

on Mean Min Max Standard deviation

5.6 0 19.9 6
4.4 0 23.2 6
2.3 0 18.2 4
1.2 0 8.7 2

Table 8
Relative performances of RBS and ISH with respect to IS

N M I RBS (%) IRBS+ISH (%) CPURBS CPURBS+ISH

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

50 2 4.6 0.1 14.9 5 0.2 15.1 4.16 3.40 4.56 2.63 0.01 10.56
3 11.5 5.3 25.7 11.7 5.4 26.4 5.73 5.45 6.21 1.13 0.12 4.34
4 9.0 7.0 11.7 9.4 7.4 12.2 7.39 6.84 8.48 2.65 1.19 4.13

100 2 4.2 �0.1 13.5 4.6 0.2 13.6 27.79 23.25 29.80 50.85 0.13 194.21
3 9.8 4.7 16.1 10.1 4.9 17.0 42.30 39.60 44.91 22.49 1.10 64.95
4 9.6 6.5 17.3 10.0 6.6 18.3 56.69 52.22 62.76 27.92 13.67 57.12

606 S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607
Finally, we tested IS, RBS and ISH algorithms
for 50–100 jobs and 2,3,4 machines. We cannot
solve these instances to the optimum due to the
CPU time requirements. Therefore, we compared
the results achieved by the RBS algorithm with
respect to the initial results given by the IS algo-
rithm in Table 8. IRBS is the percentage deviation
of RBS from the initial solution achieved by IS.
We observe that for 50-job problems, the average
improvement of the RBS algorithm over the IS is
8.4%. When we apply the RBS together with ISH,
the average improvement, IRBS+ISH, becomes
8.7%. The required CPU times are still reasonable
even for the large problem instances. In Table 8,
CPURBS+ISH indicates the additional CPU time
requirement of the ISH algorithm over the RBS
algorithm.
11. Conclusion

In this paper, we considered the problem of min-
imizing total manufacturing costs on non-identical
parallel CNC machines with an upper limit on the
makespan of the schedule. We provided an exact
algorithm (B&B) for the problem along with three
alternative lower bounding methods. To the best
of our knowledge, our algorithm is the first exact
algorithm for this problem. We further proposed a
recovering beam search algorithm which employs
our lower bounding methods as an evaluation func-
tion for partial schedules. Finally, we gave an
improvement search algorithm for the problem.
For this algorithm, we showed two properties which
provide improving search moves for a given sche-
dule. Our computational results show that the pro-
posed exact algorithm can solve the problems by
just traversing the 5% of the maximal possible
B&B tree size and the proposed lower bounding
methods can eliminate up to 80% of the search tree.
For the cases where B&B is not computationally
efficient, our beam search and improvement search
algorithms achieved solutions within 1% of the opti-
mum on the average in a very short computation
time. As a future research, we would like to extend
this study to include the tool change times in the
makespan objective and consider the tool loading
decisions for finite capacity tool magazines.
Acknowledgements

The authors would like to thank two anonymous
referees whose constructive comments have been
used to improve this paper.
References

Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 1993. Nonlinear
Programming: Theory and Algorithms. Wiley, New York.

Davis, E., Jaffe, J.M., 1981. Algorithms for scheduling tasks on
unrelated processors. Journal of the Association for Com-
puting Machinery 28, 721–736.

Della Croce, F., T’kindt, V., 2002. A recovering beam search
algorithm for the one-machine dynamic total completion time
scheduling problem. Journal of the Operational Research
Society 53, 1275–1280.

Della Croce, F., Ghirardi, M., Tadei, R., 2004. Recovering beam
search: Enhancing the beam search approach for combinato-
rial optimization problems. Journal of Heuristics 10, 89–104.

Floudas, C.A., 1995. Nonlinear and Mixed-Integer Optimization.
Oxford University Press, New York.

Hitomi, K., 1979. Manufacturing Systems Engineering: A Uni-
fied Approach to Manufacturing Technology and Production
Management. Taylor and Francis, London.

Hoogeveen, H., 2005. Multicriteria scheduling. European Journal
of Operational Research 167, 592–623.

Hoogeveen, H., Woeginger, G.J., 2002. Some comments on
sequencing with controllable processing times. Computing 68,
181–192.

Jansen, K., Mastrolilli, M., 2004. Approximation schemes for
parallel machine scheduling problems with controllable pro-
cessing times. Computers and Operations Research 31, 1565–
1581.

Karabati, S., Kouvelis, P., 1997. Flow-line scheduling problem
with controllable processing times. IIE Transactions 29, 1–14.

S. Gurel, M.S. Akturk / European Journal of Operational Research 183 (2007) 591–607 607
Kayan, R.K., Akturk, M.S., 2005. A new bounding mechanism
for the CNC machine scheduling problems with controllable
processing times. European Journal of Operational Research
167, 624–643.

Kesavan, P., Allgor, R.J., Gatzke, E.P., Barton, P.I., 2004. Outer
approximation algorithms for separable non-convex mixed-
integer nonlinear programs. Mathematical Programming 100,
517–535.

Lamond, B.F., Sodhi, M.S., 1997. Using tool life models to
minimize processing time on a flexible machine. IIE Trans-
actions 29, 611–621.

Mastrolilli, M., 2003. Notes on max flow time minimization with
controllable processing times. Computing 71, 375–386.

Ow, P.S., Morton, T.E., 1988. Filtered beam search in schedul-
ing. International Journal of Production Research 26, 35–62.
Sodhi, M.S., Lamond, B.F., Gautier, A., Noël, M., 2001.
Heuristics for determining economic processing rates in a
flexible manufacturing system. European Journal of Opera-
tional Research 129, 105–115.

T’kindt, V., Billaut, J.-C., 2006. Multicriteria Scheduling: Theory,
Models and Algorithms, second ed. Springer, Berlin.

Trick, M.A., 1994. Scheduling multiple variable-speed machines.
Operations Research 42, 234–248.

Van Wassenhove, L.N., Baker, K.R., 1982. A bicriterion
approach to time/cost tradeoffs in sequencing. European
Journal of Operational Research 11, 48–54.

Vickson, R.G., 1980. Two single-machine sequencing problems
involving controllable job processing times. AIEE Transac-
tions 12, 258–262.

	Optimal allocation and processing time decisions on non-identical parallel CNC machines: z.epsi -constraint approach
	Introduction
	Problem definition
	Single machine subproblem (Pm)
	Cost lower bounds for a partial schedule
	Initial solution
	B amp B algorithm
	Search tree
	Node elimination

	Beam search algorithm (BS)
	Improvement search heuristic (ISH)
	Recovering beam search (RBS)
	Computational results
	Conclusion
	Acknowledgements
	References

